Document Type : Original Article


1 Department of Industrial Physics, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria

2 Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan

3 Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi – Uku, Delta State, Nigeria

4 Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055, China

5 Department of Industrial Physics, Chukwuemeka Odumegwu Ojukwu University Uli, Anambra State, Nigeria

6 Department of Computer Science Education, Madonna University Nigeria, Okija Campus, Anambra State, Nigeria


Thin films of antimony-doped zinc telluride (Sb:ZnTe) were produced using an electrodeposition method. The examination included both the structural and optical characteristics, as well as the size of the crystallites. X-ray diffraction (XRD) analysis revealed Sb:ZnTe on Fluorine doped Tin Oxide (FTO) substrates had a hexagonal structure. The crystallite sizes in these thin films vary between 23.88 nm and 33.00 nm with dislocation density within the range of 2.32 to 1.02    and the microstrain between 5.59 and 3.99. UV-Vis spectroscopy revealed the absorbance values of the film decreased, with a range of 33% to 54% as the wavelength increased from 400 nm to 1100 nm. The transmittance and reflectance values of the film varied between 28.50% and 48.0% and less than 20.5%, respectively, suggesting that the deposited thin films are appropriate for use as antireflective coatings in smart window technology. The refractive indices of the films varied between 2.40 and 2.63. The extinction coefficient was found to increase with wavelength across the studied spectrum (400 nm to 1100 nm) and decrease with higher deposition potential. These extinction coefficient values suggest that the films are appropriate for use as absorber layers in thin-film solar cells. A band gap of 2.00 eV was determined at 2.5 volts and as the deposition potential increased, the films showed a decrease in the energy band gap. Gravimetric method analysis revealed that the thickness of antimony doped zinc telluride films increased from 126.18 nm to 378 nm as the deposition potentials increased from 2.5 volts to 4.5 volts. It is critical to control the electrodeposition potential to achieve the desired film thickness and properties.

Graphical Abstract

Effect of deposition potential on the structural and optical properties of electrodeposited antimony doped zinc telluride (Sb:ZnTe) thin films for optoelectronic applications



©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Sami Publishing Company

[1]. Nande, A., Kalyani, N. T., Tiwari, A., Dhoble, S. J. Exploring the world of functional materials. In Functional Materials from Carbon, Inorganic, and Organic Sources Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2023, pp 1-19 [Crossref]
[2]. Hossain N., Mobarak M.H., Mimona M.A., Islam M.A., Hossain A., Zohur F.T., Chowdhury M.A. Advances and significances of nanoparticles in semiconductor applications–A review, Results in Engineering, 2023, 101347 [Crossref], [Google Scholar], [Publisher]
[3]. Shen Y., Zhang Y., Huo J., Li X., Yan Z., Pan Y., Sun W., Deng N., Kang W., Two-dimensional SnSe material for solar cells and rechargeable batteries, Journal of Energy Storage, 2023, 69:107958 [Crossref], [Google Scholar], [Publisher]
[4]. Lal N., Chawla K., Sharma S., Chouhan R.L., Lal C. Study of electrodeposited zinc selenide (ZnSe) nanostructure thin films for solar cell applications, Journal of the Indian Chemical Society, 2023, 100:101006 [Crossref], [Google Scholar], [Publisher]
[5]. Campbell S., Phillips L.J., Major J.D., Hutter O.S., Voyce R., Qu Y., Beattie N.S., Zoppi G., Barrioz V. Routes to increase performance for antimony selenide solar cells using inorganic hole transport layers, Frontiers in Chemistry, 2022, 10:954588 [Crossref], [Google Scholar], [Publisher]
[6]. Chen X., Li J., Zhong Y., Li X., Pan M., Qi H., Dong H., Zhang L. Highly efficient and stable CdZnSeS/ZnSeS quantum dots for application in white light-emitting diode, Frontiers in Chemistry, 2022, 10:845206 [Crossref], [Google Scholar], [Publisher]
[7]. Zargar R.A. Fabrication and improved response of ZnO-CdO composite films under different laser irradiation dose, Scientific Reports, 2022, 12:10096 [Crossref], [Google Scholar], [Publisher]
[8]. Gozeh B.A., Karabulut A., Yildiz A., Dere A., Arif B.,Yakuphanoglu F. SILAR controlled CdS nanoparticles sensitized CdO diode based photodetectors, Silicon, 2020, 12:1673 [Crossref], [Google Scholar], [Publisher]
[9]. Bairy R., Somayaji A., Marakala N., Devadiga U., Rajesh M.,Wal J.C. Role of Cobalt Doping on the Physical Properties of CdO Nanocrystalline Thin Films for Optoelectronic Applications, Advances in Materials Science and Engineering, 2022, 2022:[Crossref], [Google Scholar], [Publisher]
[10]. Patra P., Kumar R., Kumar C., Mahato P.K. Ni-incorporated cadmium sulphide quantum dots for solar cell: an evolution to microstructural and linear-nonlinear optical properties, Journal of Crystal Growth, 2022, 583:126542 [Crossref], [Google Scholar], [Publisher]
[11]. Rashid M.H., Koel A., Rang T., Nasir N., Sabir N., Ameen F., Rasheed A. Optical dynamics of copper-doped cadmium sulfide (CdS) and zinc sulfide (ZnS) quantum-dots core/shell nanocrystals, Nanomaterials, 2022, 12:2277 [Crossref], [Google Scholar], [Publisher]
[12]. Feng H., Song J., Song B., Lin Q., Shen H., Li L.S., Wang H., Du Z. Highly efficient near-infrared light-emitting diodes based on chloride treated CdTe/CdSe type-II quantum dots, Frontiers in Chemistry, 2020, 8:266 [Crossref], [Google Scholar], [Publisher]
[13]. Grover R., Srivastava R., Saxena K. Luminescence studies in cadmium telluride nanocrystals grown on glass substrates, RSC Advances, 2022, 12:26596 [Crossref], [Google Scholar], [Publisher]
[14]. Elmourabit F., Dlimi S., Ouissaaden F.I., Khoukh A., Amiri L., Nkhaili L., Limouny L., Narjis A. Structural and optical properties of smooth radio frequency sputtered XTe (X= Cd, Zn) thin films, Physica B: Condensed Matter, 2023, 666:415058 [Crossref], [Google Scholar], [Publisher]
[15]. Isik M., Gullu H., Parlak M., Gasanly N. Synthesis and temperature-tuned band gap characteristics of magnetron sputtered ZnTe thin films, Physica B: Condensed Matter, 2020, 582:411968 [Crossref], [Google Scholar], [Publisher]
[16]. Mahmood A., Rashid R., Aziz U., Shah A., Ali Z., Raza Q., Ashraf T. Structural and optical properties of Zn1− xNixTe thin films prepared by electron beam evaporation technique, Progress in Natural Science: Materials International, 2015, 25:22 [Crossref], [Google Scholar], [Publisher]
[17]. Suthar D., Chuhadiya S., Sharma R., Dhaka M. An overview on the role of ZnTe as an efficient interface in CdTe thin film solar cells: a review, Materials Advances, 2022, 3:8081 [Crossref], [Google Scholar], [Publisher]
[18]. Pandey N., Kumar B., Dwivedi D. Synthesis and characterization of pure and Sb/Sn doped ZnTe for solar cell application, Materials Research Express, 2019, 6:096425 [Crossref], [Google Scholar], [Publisher]
[19]. Younus I.A., Ezzat A.M., Uonis M.M. Preparation of ZnTe thin films using chemical bath deposition technique, Nanocomposites, 2020, 6:165 [Crossref], [Google Scholar], [Publisher]
[20]. Maki S.A., Hassun H.K. Effect of Aluminum on Characterization of ZnTe/n-Si Heterojunction Photodetector, Journal of Physics: Conference Series, (IOP Publishing), 2018, 1003, 012085. [Crossref], [Google Scholar], [Publisher]
[21]. Jang Y.J., Lee C., Moon Y.H., Choe S. Solar-Driven Syngas Production Using Al-Doped ZnTe Nanorod Photocathodes, Materials, 2022, 15:3102 [Crossref], [Google Scholar], [Publisher]
[22]. Chamola P., Mittal P. Impact of ZnTe, SbZnTe and SnZnTe absorber materials for multi-layered solar cell: parametric extraction and layer wise internal analysis, Optik, 2020, 224:165626 [Crossref], [Google Scholar], [Publisher]
[23]. Pandey N., Kumar B., Dwivedi D.K. Structural and optical properties investigation of Sn-doped ZnTe thin film, Journal of Nano Trends - A Journal of Nano Technology & Its Applications, 2019, 21:13
[24]. Lin X., Zhang Y., Zhu Z., Wu Q., Liu X. Radio frequency sputtered films of copper-doped zinc telluride, Chemical Physics Letters, 2021, 767:138358 [Crossref], [Google Scholar], [Publisher]
[25]. Ahmed M., Alshahrie A., Shaaban E.R. Resulting effect of the p-Type of ZnTe: Cu thin films of the intermediate layer in heterojunction solar cells: structural, optical, and electrical characteristics, Materials, 2023, 16:3082 [Crossref], [Google Scholar], [Publisher]
[26]. Kindvall A., Munshi A., Shimpi T., Danielson A., Sampath W.S. Copper-Doped Zinc Telluride Thin-Films as a Back Contact for Cadmium Telluride Photovoltaics. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018, 2994-2997. [Crossref], [Google Scholar], [Publisher]
[27]. Barati A., Klein A., Jaegermann W. Deposition and characterization of highly p-type antimony doped ZnTe thin films, Thin Solid Films, 2009, 517:2149 [Crossref], [Google Scholar], [Publisher]
[28]. Mohanraj K., Thangarasu R., Mohanbabu B., Babu B. Preparation and characterization of nano sized pure ZnTe and antimony doped ZnTe nano thin films by spray pyrolysis technique, Nanoscale Reports, 2018, 1:1 [Crossref], [Google Scholar]
[29]. Das S., Priyadarshini P., Senapati S., Bisoyi S., Samal S., Naik R. Templet-free one-pot synthesis of Bi-doped ZnTe nanoflowers by cation exchange method for optoelectronic applications and antibacterial activity, Journal of Alloys and Compounds, 2023, 960:170999 [Crossref], [Google Scholar], [Publisher]
[30]. Oklobia O., Kartopu G., JC Irvine S. Properties of arsenic–doped ZnTe thin films as a back contact for CdTe solar cells, Materials, 2019, 12:3706 [Crossref], [Google Scholar], [Publisher]
[31]. Mahdy I.A., Mahmoud S.A., Mahdy M.A. Tuning structural, electrical, linear, and nonlinear optical properties of cadmium zinc telluride quantum dot thin films, Journal of Materials Research, 2023, 38:391 [Crossref], [Google Scholar], [Publisher]
[32]. Shah N.A., Mahmood W., Abbas M., Nazar N., Khosa A.H., Zeb A., Malik A. The synthesis of CdZnTe semiconductor thin films for tandem solar cells, RSC Advances, 2021, 11:39940 [Crossref], [Google Scholar], [Publisher]
[33]. Shimpi T.M., Drayton J., Swanson D.E., Sampath W.S. Properties of nitrogen-doped zinc telluride films for back contact to cadmium telluride photovoltaics, Journal of Electronic Materials, 2017, 46:5112 [Crossref], [Google Scholar], [Publisher]
[34]. Aqilia A., Abu-Omara T., Al-Reyahia A., Shaheena A., Al-Omaria S., Alhagisha I. Effect of phosphoric acid treatment on the physical properties of zinc telluride thin films, Chalcogenide Letters, 2023, 20:113 [Crossref], [Google Scholar], [Publisher]
[35]. Mustofa M., Mishima S., Saito K., Guo Q., Tanaka T. Growth of phosphorus-doped ZnTe thin films by molecular beam epitaxy using InP as the dopant source, Japanese Journal of Applied Physics, 2023, 62:SK1031 [Crossref], [Google Scholar], [Publisher]
[36]. Rehman K.M.U., Liu X., Riaz M., Yang Y., Feng S., Khan M.W., Ahmad A., Shezad M., Wazir Z., Ali Z. Fabrication and characterization of Zinc Telluride (ZnTe) thin films grown on glass substrates, Physica B: Condensed Matter, 2019, 560:204 [Crossref], [Google Scholar], [Publisher]
[37]. Athab R., Hussein B. Fabrication and investigation of zinc telluride thin films, Chalcogenide Letters, 2023, 20:477 [Crossref], [Google Scholar]
[38]. Lungu I., Ghimpu L., Untila D., Potlog T. Copper-related defects in ZnTe thin films grown by the close space sublimation method, Moldavian Journal of the Physical Sciences, 2022, 21:34 [Crossref], [Google Scholar], [Publisher]
[39]. Mahmood W., Awan S.U., Ud Din A., Ali J., Nasir M.F., Ali N., ul Haq A., Kamran M., Parveen B., Rafiq M., Pronounced impact of p-type carriers and reduction of bandgap in semiconducting ZnTe thin films by Cu doping for intermediate buffer layer in heterojunction solar cells, Materials, 2019, 12:1359 [Crossref], [Google Scholar], [Publisher]
[40]. Zarei R., Ehsani M., Dizaji H.R. An investigation on structural and optical properties of nanocolumnar ZnTe thin films grown by glancing angle technique, Materials Research Express, 2020, 7:026419 [Crossref], [Google Scholar], [Publisher]
[41]. Rathod K.C., Kamble P.D., Sanadi K.R., Kamble G.S., Guar M.L., Garadkar K.M. Photovoltaic application study of zinc telluride thin films grown by chemical bath deposition method, Advances in Materials Physics and Chemistry, 2021, 11:131 [Crossref], [Google Scholar], [Publisher]
[42]. Saeed N., Uonis M. Preparation of zinc telluride thin films using chemical bath depositon, Chalcogenide Letters, 2022, 19:61 [Crossref], [Google Scholar]
[43]. Seo J., Yoon S., Park K., Park J.J., Kim J., Yoo B. Role of Tellurium Ions for Electrochemically Synthesized Zinc Telluride 2D Structures on Nonconductive Substrate, Advanced Materials Interfaces, 2023, 10:2202023 [Crossref], [Google Scholar], [Publisher]
[44]. Luo M.s., Ma Z.w., Zhang Z.l., Wang Z.j., Jiang L.x., Jia M., Liu F.y. Preparation of semiconductor zinc telluride by photoelectrochemical deposition, Journal of Central South University, 2022, 29:2899 [Crossref], [Google Scholar], [Publisher]
[45]. Elsayed E., Shenouda A.Y. Studies on electrodeposition of zinc selenide and zinc telluride and their photoelectrochemical cell behavior, Egyptian Journal of Chemistry, 2022, 65:623 [Crossref], [Google Scholar], [Publisher]
[46]. Rajpal S., Kumar S. Annealing temperature dependent structural and optical properties of nanocrystalline ZnTe thin films developed by electrodeposition technique, Solid State Sciences, 2020, 108:106424 [Crossref], [Google Scholar], [Publisher]
[47]. Olusola O.I.O., Madugu M.L., Dharmadasa I.M., Growth of n-and p-type ZnTe semiconductors by intrinsic doping, Materials Research Innovations, 2015, 19:497 [Crossref], [Google Scholar], [Publisher]
[48]. Faydh T.I., Salim K.D., Mahmood K.H. Structural and optical properties of manganese doped ZnTe: mn thin films prepared by pulsed laser method, Journal of Pharmaceutical Negative Results, 2022, 214 [Crossref], [Google Scholar], [Publisher]
[49]. Ochoa-Estrella F., Vera-Marquina A., Mejia I., Leal-Cruz A., Pintor-Monroy M., Quevedo-López M. Structural, optical, and electrical properties of ZnTe: Cu thin films by PLD, Journal of Materials Science: Materials in Electronics, 2018, 29:20623 [Crossref], [Google Scholar], [Publisher]
[50]. Panaitescu A.M., Antohe I., Răduță A.M., Iftimie S., Antohe Ș., Mihăilescu C.N., Antohe V.A. Morphological, optical, and electrical properties of RF-sputtered zinc telluride thin films for electronic and optoelectronic applications, AIP Advances, 2022, 12: 115013 [Crossref], [Google Scholar], [Publisher]
[51]. Manica D., Antohe V.A., Moldovan A., Pascu R., Iftimie S., Ion L., Suchea M.P., Antohe Ş. Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications, Nanomaterials, 2021, 11:2286 [Crossref], [Google Scholar], [Publisher]
[52]. Costa J.G.d.R.d., Costa J.M., Almeida Neto A.F.d. Progress on electrodeposition of metals and alloys using ionic liquids as electrolytes, Metals, 2022, 12:2095 [Crossref], [Google Scholar], [Publisher]
[53]. Yu Y., Gong M., Dong C., Xu X. Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries, Next Nanotechnology, 2023, 100028 [Crossref], [Google Scholar], [Publisher]
[54]. Ruiz-Gómez S., Fernández-González C., Perez L. Electrodeposition as a tool for nanostructuring magnetic materials, Micromachines, 2022, 13:1223 [Crossref], [Google Scholar], [Publisher]
[55]. Yimamu A., Afrassa M., Dejene B., Echendu O., Terblans J., Swart H., Motloung S. Electrodeposition of CdTe thin films using an acetate precursor for solar energy application: The effect of deposition voltage, Materials Today Communications, 2023, 35:105673 [Crossref], [Google Scholar], [Publisher]
[56]. Park J., Seo J., Lim J.H., Yoo B. Synthesis of copper telluride thin films by electrodeposition and their electrical and thermoelectric properties, Frontiers in Chemistry, 2022, 10:799305 [Crossref], [Google Scholar], [Publisher]
[57]. Sawant J., Bhujbal P., Choure N., Kale R., Pathan H. Copper indium disulfide thin films: electrochemical deposition and properties, ES Materials & Manufacturing, 2022, 17:14 [Crossref], [Google Scholar]
[58]. N'guessan A.I., Bouich A., Soro D., Soucase B.M. Growth of copper indium diselenide ternary thin films (CuInSe2) for solar cells: Optimization of electrodeposition potential and pH parameters, Heliyon, 2023, 9: e19057 [Crossref], [Google Scholar], [Publisher]
[59]. Mohapi T., Yimamu A., Tshabalala K., Motloung S. Effect of deposition voltage on the properties of electrodeposited CdZrS thin films for solar cell application, Physica B: Condensed Matter, 2023, 671:415405 [Crossref], [Google Scholar], [Publisher]
[60]. Tanwar A., Kaur R., Padmanathan N., Razeeb K.M. Electrodeposited CuSbTe thin films with enhanced thermoelectric performance, Sustainable Energy & Fuels, 2023, 7:4160 [Crossref], [Google Scholar], [Publisher]
[61]. Hwang S.K., Yoon J.H., Kim J.Y. Current Status and Future Prospects of Kesterite Cu2ZnSn (S, Se) 4 (CZTSSe) Thin Film Solar Cells Prepared via Electrochemical Deposition, ChemElectroChem, 2024, e202300729 [Crossref], [Google Scholar], [Publisher]
[62]. Rodríguez-Rosales K., Marasamy L., Quiñones-Galván J., Santos-Cruz J., Mayén-Hernández S., Guillen-Cervantes A., Contreras-Puente G., de Moure-Flores F. One-step electrodeposition of CuAlGaSe2 thin films using triethanolamine as a complexing agent, Thin Solid Films, 2020, 713:138351 [Crossref], [Google Scholar], [Publisher]
[63]. Ezenwaka L., Okoli N., Okereke N., Ezenwa I., Nwori N., Properties of electrosynthesized cobalt doped zinc selenide thin films deposited at varying time, Nanoarchitectonics, 2022, 1 [Crossref], [Google Scholar], [Publisher]
[64]. Nwanya A.C., Obi D., Osuji R.U., Bucher R., Maaza M., Ezema F.I. Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications, Journal of Solid State Electrochemistry, 2017, 21:2567 [Crossref], [Google Scholar], [Publisher]
[65]. Nkamuo C., Okoli N., Nzekwe F., Egwunyenga N. Tuning the properties of manganese-doped zinc oxide nanostructured thin films deposited by SILAR approach, Chemistry of Inorganic Materials, 2024, 2:100038 [Crossref], [Google Scholar], [Publisher]
[66]. Okoli N., Nkamuo C., Elekalachi C., Obimma I. Influence of Annealing Temperature on the Optical, Structural, Morphological and Compositional Properties of SILAR Deposited Copper Manganese Oxide Thin Films, Journal of Nano and Materials Science Research, 2022, 1:68 [Google Scholar], [Publisher]
[67]. Wijanarka W.A., Toifur M. Effect of deposition voltage on layer thickness, microstructure, Cu/Ni sheet resistivity of deposition results by magnetic field electroplating assisted technique, Indonesian Review of Physics, 2020, 3:23 [Crossref], [Google Scholar], [Publisher]
[68]. Arulkumar E., Thanikaikarasan S.,Tesfie N. Influence of deposition parameters for Cu 2 O and CuO thin films by electrodeposition technique: a short review, Journal of Nanomaterials, 2023, 2023 [Crossref], [Google Scholar], [Publisher]
[69]. Olusola O., Madugu M., Abdul-Manaf N., Dharmadasa I. Growth and characterisation of n-and p-type ZnTe thin films for applications in electronic devices, Current Applied Physics, 2016, 16:120 [Crossref], [Google Scholar], [Publisher]
[70]. Olusola O.I.O., Madugu M.L., Dharmadasa I.M. Growth of n-and p-type ZnTe semiconductors by intrinsic doping, Materials Research Innovations, 2015, 19:497 [Crossref], [Google Scholar], [Publisher]
[71]. Ravindranadh K., Prasad K.D.V., Rao M. Spectroscopic and luminescent properties of Co 2+ doped tin oxide thin films by spray pyrolysis, AIMS Materials Science, 2016, 3:796 [Crossref], [Google Scholar], [Publisher]
[72]. Okorieimoh C., Chime U., Nkele A.C., Nwanya A.C., Madiba I.G., Bashir A., Botha S., Asogwa P.U., Maaza M., Ezema F.I. Room-temperature synthesis and optical properties of nanostructured Ba-Doped ZnO thin films, Superlattices and Microstructures, 2019, 130:321 [Crossref], [Google Scholar], [Publisher]
[73]. Onu C.P., Ekpunobi A.J., Okafor C.E., Ozobialu L.A. Optical properties of monazite nanoparticles prepared via ball milling, Asian Journal of Research and Reviews in Physics, 2023, 7:17 [Crossref], [Google Scholar], [Publisher]
[74]. Jeroh D., Ekpunobi A., Okoli D. Growth of nanostructured zinc selenide films doped with europium and their possible applications, Applied Nanoscience, 2023, 13:4605 [Crossref], [Google Scholar], [Publisher]
[75]. Muogbo I.P., Ekpunobi A.J., Okoli N.L. Exploring the optical, structural, morphological, and compositional properties of electrosynthesized FeSe/CrSe superlattice thin films, Journal of Medicinal and Nanomaterials Chemistry, 2023, 5:307  [Crossref], [Google Scholar], [Publisher]
[76]. Awada C., Whyte G.M., Offor P.O., Whyte F.U., Kanoun M.B., Goumri-Said S., Alshoaibi A., Ekwealor A.B., Maaza M., Ezema F.I. Synthesis and studies of electro-deposited yttrium arsenic selenide nanofilms for opto-electronic applications, Nanomaterials, 2020, 10:1557 [Crossref], [Google Scholar], [Publisher]
 [77]. Ganesan K., Anandhan N., Marimuthu T., Panneerselvam R., Roselin A.A. Effect of deposition potential on synthesis, structural, morphological and photoconductivity response of Cu 2 O thin films by electrodeposition technique, Acta Metallurgica Sinica (English Letters), 2019, 32:1065 [Crossref], [Google Scholar], [Publisher]
[78]. Kumar K.D.A., Valanarasu S., Ganesh V., Shkir M., AlFaify S., Algarni H. Effect of potential voltages on key functional properties of transparent AZO thin films prepared by electrochemical deposition method for optoelectronic applications, Journal of materials research, 2018, 33:1523 [Crossref], [Google Scholar], [Publisher]
[79]. Salim H., Olusola O., Ojo A., Urasov K., Dergacheva M., Dharmadasa I. Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells, Journal of Materials Science: Materials in Electronics, 2016, 27:6786 [Crossref], [Google Scholar], [Publisher]