Document Type : Original Article

Authors

1 Department of Physics, Federal College of Education (Technical) Umunze

2 Department of Industrial Physics, Nnamdi Azikiwe University, Awka, Nigeria

3 Madonna University Nigeria, Okija Campus, Nigeria

10.48309/jmnc.2023.4.6

Abstract

Iron selenide/chromium selenide (FeSe/CrSe) superlattice thin films were successfully deposited on conducting substrates (fluorine doped tin oxide) by electrodeposition. The thicknesses of the FeSe/CrSe superlattice thin films were found to range from 125.65 nm to 251.31 nm. The optical properties of the deposited superlattice thin films showed that the absorbance ranged from 11.70% to 80.91% and the transmittance values ranged from 15.52% to 76.39%. These films showed low reflectance values in all the wavelength regions studied, with the maximum reflectance values within the UV region. The refractive indices of deposited thin films ranged from 2.03 to 2.62. The extinction coefficient of the films ranged from 1.20 to 3.09. The energy bandgap values of the films vary with the deposition potential, from 2.60 to 3.10 eV. The structural analysis of these films confirmed that FeSe/CrSe superlattice thin films exhibited peaks corresponding to the hexagonal structural phases of these binary compounds. Average crystallite sizes were found to range from 18.844 nm to 40.766 nm. The dislocation density of the films ranged from 1.871 to 3.597 lines/m2 while the microstrain ranged from 4.120 to 6.073. The structural results showed that crystallite size of the films increased as deposition potential increased, while dislocation density and microstrain of the films were found to decrease with an increase in deposition potentials. SEM images revealed that the surfaces are made up of tiny, agglomerated particles of different sizes and shapes. Analyses of EDS spectra showed that these films are made up of desired elements.

Graphical Abstract

Exploring the optical, structural, morphological and compositional properties of electrosynthesized FeSe/CrSe superlattice thin films

Keywords

[1]. Kadhim M., Adail Glob M. The Effect of Double Spectrum Colors Factor on Solar Cells Performance in Inorganic Solar Cells, J. Chem. Rev., 2023, 5:353 [Crossref], [Publisher]
[2]. Lal N., Chawla K., Sharma S., Chouhan R.L., Lal C. J. Indian Chem. Soc., 2023, 100:101006 [Crossref], [Google Scholar], [Publisher]
[3]. Abel S., Tesfaye J.L., Nagaprasad N., Shanmugam R., Dwarampudi L.P., Deepak T., Zhang H., Krishnaraj R., Stalin B. Bioinorg. Chem. Appl., 2022, 2022: 1003803 [Crossref], [Google Scholar], [Publisher]
[4]. Alyobi M.M., Alamri S.N. J. Taibah Univ. Sci., 2023, 17:2271232 [Crossref], [Google Scholar], [Publisher]
[5]. Ben Hjal A., Pezzato L., Colusso E., Alouani K., Dabalà M. Ionics, 2023, 1 [Crossref], [Google Scholar], [Publisher]
[6]. Sharma A., Gupta G. Mater. Sci. Eng. B, 2023, 290:116333 [Crossref], [Google Scholar], [Publisher]
[7]. Rzaij J.M., Abass A.M. J. Chem. Rev, 2020, 2:114 [Crossref], [Google Scholar], [Publisher]
[8]. Zheng W., Yang C., Li Z., Xie J., Lou C., Lei G., Liu X., Zhang J. Sens. Actuators B Chem., 2021, 329:129127 [Crossref], [Google Scholar], [Publisher]
[9]. Liu S., Liu Y., Li H., Bai Y., Xue J., Xu R., Zhang M., Chen G. Nanotechnol., 2022, 33:215501 [Crossref], [Google Scholar], [Publisher]
[10]. Al-Zohbi F. J. Chem. Rev., 2023, 5:143 [Crossref], [Google Scholar], [Publisher]
[11]. Khot S., Malavekar D., Nikam R., Ubale S., Bagwade P., Patil D., Lokhande V., Lokhande C. Synth. Met., 2022, 287:117075 [Crossref], [Google Scholar], [Publisher]
[12]. Scarpa D., Cirillo C., Ponticorvo E., Cirillo C., Attanasio C., Iuliano M., Sarno M. Mater., 2023, 16:5309 [Crossref], [Google Scholar], [Publisher]
[13]. Abbas Q., Khurshid H., Yoosuf R., Lawrence J., Issa B.A., Abdelkareem M.A., Olabi A.G. Sci. Rep., 2023, 13:15654. [Crossref], [Google Scholar], [Publisher]
[14]. Kane M.H., Arefin N. (LEDs), Elsevier, 2014, 99. [Crossref], [Google Scholar], [Publisher]
[15]. Ubale A.U., Sakhare Y.S., Bhute M.V., Belkhedkar M.R., Singh A. Solid State Sci., 2013, 16:134 [Crossref], [Google Scholar], [Publisher]
[16]. Qasrawi A.F., Toubasi A.J. Optik, 2023, 287:171173 [Crossref], [Google Scholar], [Publisher]
[17]. NM S.S.B., Chandra Mohan R., Saravana Kumar S., Ayeshamariam A., Jayachandran M. Fluid Mech Open Acc, 2017, 4:6 [Crossref], [Google Scholar], [Publisher]
[18]. Piperno L., Celentano G., Sotgiu G. Coatings, 2023, 13:1905 [Crossref], [Google Scholar], [Publisher]
[19]. Thanikaikarasan S., Perumal R., Marjorie S.R. J. Alloys Compd., 2020, 848:156348 [Crossref], [Google Scholar], [Publisher]
[20]. Thanikaikarasan S., Perumal R., Thanikaivelan E., Ahamad T., Alshehri S.M. J. New Mater. Electrochem. Syst., 2023, 26:101 [Crossref], [Google Scholar], [Publisher
[21]. Kariper I. J. Non-Oxide Glass., 2015, 7:37 [Google Scholar], [Publisher]
[22]. Roy A., Dey R., Pramanik T., Rai A., Schalip R., Majumder S., Guchhait S., Banerjee S.K. Phys. Rev. Mater., 2020, 4:025001 [Crossref], [Google Scholar], [Publisher]
[23]. Zeynalova A.O., Javadova S.P., Majidzade V.A., Sh A.A. 2021, 262 [Crossref], [Google Scholar], [Publisher]
[24]. Pesko E., Zukowska G., Zero E., Krzton-Maziopa A. Thin Solid Films, 2020, 709:138121 [Crossref], [Google Scholar], [Publisher]
[25]. Hussain R.A., Badshah A., Younis A., Khan M.D., Akhtar J. Thin Solid Films, 2014, 567:58 [Crossref], [Google Scholar], [Publisher]
[26]. Akhtar M., Malik M.A., Raftery J., O'Brien P. J.  Mater. Chem. A, 2014, 2:20612 [Crossref], [Google Scholar], [Publisher]
[27]. Obata Y., Karateev I.A., Pavlov I., Vasiliev A.L., Haindl S. Micromachines, 2021, 12:1224 [Crossref], [Google Scholar], [Publisher]
[28]. Obata Y., Sato M., Kondo Y., Yamaguchi Y., Karateev I.A., Pavlov I., Vasiliev A.L., Haindl S. ACS Appl. Mater. Interfaces, 2021, 13:53162 [Crossref], [Google Scholar], [Publisher]
[29]. Sohrabi P., Ghobadi N. Appl. Phys. A, 2019, 125:1 [Crossref], [Google Scholar], [Publisher]
[30]. Kariper I.A. Opt. Rev., 2017, 24:139 [Crossref], [Google Scholar], [Publisher]
[31]. Tezel F.M., Kariper İ.A. MRX, 2018, 6:036412 [Crossref], [Google Scholar], [Publisher]
[32]. Minakshi M., Mitchell D.R., Munnangi A.R., Barlow A.J., Fichtner M. Nanoscale, 2018, 10:13277 [Crossref], [Google Scholar], [Publisher]
[33]. Okoli N.L., Ezenwaka L.N., Okereke N.A., Ezenwa I.A., Nwori N.A. Trends Sci, 2022, 19:5686 [Crossref], [Google Scholar], [Publisher]
[34]. Egwunyenga N., Onuabuchi V., Okoli N., Nwankwo I. IRJMT, 2021, 3:1 [Crossref], [Google Scholar], [Publisher]
[35]. Egwunyenga N., Ezenwaka L., Ezenwa I., Okoli N. MRX, 2019, 6:105921 [Crossref], [Google Scholar], [Publisher]
[36]. Augustine C., Nnabuchi M., Chikwenze R., Anyaegbunam F., Kalu P., Robert B., Nwosu C., Dike C., Taddy E. MRX, 2019, 6:066416 [Crossref], [Google Scholar], [Publisher]
[37]. Saravanan V., Anusuya M., Ugwuoke C.O., Nwulu N., Ezema F.I. Results Opt., 2023, 13:100548 [Crossref], [Google Scholar], [Publisher]
[38]. Aboud A.A., Mukherjee A., Revaprasadu N., Mohamed A.N. J. Mater. Res. Technol., 2019, 8:2021 [Crossref], [Google Scholar], [Publisher]
[39]. Elekalachi C., Ezenwa I., Okereke A., Okoli N., Nwori A. Nanoarchitectonics, 2023, 26 [Crossref], [Google Scholar], [Publisher]
[40]. Nwori A.N., Ezenwaka L.N., Ottih I.E., Okereke N.A., Okoli N.L. Trends Sci., 2022, 19:5747 [Crossref], [Google Scholar], [Publisher]
[41]. Eze C., Ezenwa I., Okoli N., Elekalachi C., Okereke N. J. Nano Mater. Sci. Res., 2023, 2:123 [Crossref], [Google Scholar], [Publisher]
[42]. Onu C.P., Ekpunobi A.J., Okafor C.E., Ozobialu L.A. Asian J. Res. Rev. Phy., 2023, 7:17 [Crossref], [Google Scholar], [Publisher]
[43]. Nkele A.C., Nwankwo U., Alshoaibi A., Ezema F.I. Results Opt., 2023, 13:100521 [Crossref], [Google Scholar], [Publisher]
[44]. Contreras-Rodriguez R., Mendivil-Reynoso T., Landin I.O., Castillo S., Ochoa-Landín R. ACS omega, 2023, 8:41411 [Crossref], [Google Scholar], [Publisher]
[45]. Whyte G., Awada C., Offor P., Whyte F., Kanoun M., Goumri-Said S., Alshoaibi A., Ekwealor A., Maaza M., Ezema F.I. J. Alloys Compd., 2021, 855:157324 [Crossref], [Google Scholar], [Publisher]
[46]. Ijeh R.O., Ugwuoke C.O., Ugwu E.B., Aisida S.O., Ezema F.I. Ceram. Int., 2022, 48:4686 [Crossref], [Google Scholar], [Publisher]
[47]. Tauc J., Grigorovici R., Vancu A. physica status solidi (b), 1966, 15:627 [Crossref], [Google Scholar], [Publisher]
[48]. Olubosede O., Faremi A.A., Owolabi F.M., Ajiboye E., Fateye J.O., Olanibi E.O. FUOYE J. Eng. Technol., 2020, 5:74 [Crossref], [Google Scholar], [Publisher]
[49]. Kumar K.D.A., Valanarasu S., Ganesh V., Shkir M., AlFaify S., Algarni H. J. Mater. Res., 2018, 33:1523 [Crossref], [Google Scholar], [Publisher]
[50]. Salim H., Olusola O., Ojo A., Urasov K., Dergacheva M., Dharmadasa I. J. Mater. Sci. Mater. Electron., 2016, 27:6786 [Crossref], [Google Scholar], [Publisher]
[51]. Ikhioya I.L., Aisida S.O., Ahmad I., Ezema F.I. Chem. Phys. Impact, 2023, 7:100269 [Crossref], [Google Scholar], [Publisher]
[52]. Ikhioya I.L., Ugwuoke C.O., Obodo R.M., Okoli D., Eze C.U., Maaza M., Ezema F.I. Appl. Surf. Sci. Adv., 2022, 9:100232 [Crossref], [Google Scholar], [Publisher]
[53]. Okorieimoh C., Chime U., Nkele A.C., Nwanya A.C., Madiba I.G., Bashir A., Botha S., Asogwa P.U., Maaza M., Ezema F.I. Superlattices Microstruct., 2019, 130:321 [Crossref], [Google Scholar], [Publisher]
[54]. Ahmad I., Razzaq J., Ammara A., Kaleem F., Qamar M., Ilahi S., Ikhioya I.L. Adv. J. Chem., Section A, 2024, 7: 110 [Crossref], [Google Scholar], [Publisher]
[55]. Samuel S.O., Lagbegha-ebi M.F., Ogherohwo E., Ikhioya I.L. Results Opt., 2023, 13:100518 [Crossref], [Google Scholar], [Publisher]
[56]. Saravanan V., Anusuya M., Nkele A.C., Ramachandran K., Shanthi A., Valsakumari M., Ezema F.I. Appl. Surf. Sci. Adv., 2022, 11:100294 [Crossref], [Google Scholar], [Publisher]
[57]. Boontan A., Barimah E.K., Steenson P., Jose G. ACS Appl. Mater. Interfaces, 2023, 15:51606 [Crossref], [Google Scholar], [Publisher]
[58]. Awada C., Whyte G.M., Offor P.O., Whyte F.U., Kanoun M.B., Goumri-Said S., Alshoaibi A., Ekwealor A.B., Maaza M., Ezema F.I. Nanomater., 2020, 10:1557 [Crossref], [Google Scholar], [Publisher]