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Thin films of antimony-doped zinc telluride (Sb:ZnTe) were produced using 
an electrodeposition method. The examination included both the structural 
and optical characteristics, as well as the size of the crystallites. X-ray 
diffraction (XRD) analysis revealed Sb:ZnTe on Fluorine doped Tin Oxide 
(FTO) substrates had a hexagonal structure. The crystallite sizes in these 
thin films vary between 23.88 nm and 33.00 nm with dislocation density 
within the range of 2.32 to 1.02 × 1015 𝑙𝑖𝑛𝑒𝑠/𝑚2 and the microstrain 
between 5.59 and 3.99. UV-Vis spectroscopy revealed the absorbance values 
of the film decreased, with a range of 33% to 54% as the wavelength 
increased from 400 nm to 1100 nm. The transmittance and reflectance 
values of the film varied between 28.50% and 48.0% and less than 20.5%, 
respectively, suggesting that the deposited thin films are appropriate for 
use as antireflective coatings in smart window technology. The refractive 
indices of the films varied between 2.40 and 2.63. The extinction coefficient 
was found to increase with wavelength across the studied spectrum (400 
nm to 1100 nm) and decrease with higher deposition potential. These 
extinction coefficient values suggest that the films are appropriate for use as 
absorber layers in thin-film solar cells. A band gap of 2.00 eV was 
determined at 2.5 volts and as the deposition potential increased, the films 
showed a decrease in the energy band gap. Gravimetric method analysis 
revealed that the thickness of antimony doped zinc telluride films increased 
from 126.18 nm to 378 nm as the deposition potentials increased from 2.5 
volts to 4.5 volts. It is critical to control the electrodeposition potential to 
achieve the desired film thickness and properties. 
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Graphical Abstract  

 

Introduction 

As scientific inquiry progressed, thin films 

have emerged as materials with distinctive 

properties which significantly differ from their 

bulk counterparts. Over the past few years, the 

thorough understanding and modification of 

thin film properties has had a significant 

impact on their use in various electronic 

applications. Scientists have invested 

substantial resources in the synthesis of 

semiconducting thin films. The combination of 

elements from Group II (metals) and Group VI 

(chalcogens) on the periodic table [1] produces 

compounds that exhibit semiconductor 

properties. These semiconducting materials 

have generated a great deal of interest in both 

fundamental research and practical 

technological applications [2]. Among these 

compounds, those derived from Group IIB and 

Group VI elements, such as zinc based 

chalcogenides (ZnO, ZnS, ZnSe, and ZnTe) and 

cadmium based chalcogenides (CdO, CdS, CdSe, 

and CdTe), have been widely used in an array 

of optoelectronic devices such as radiation 

detectors, solar cells, magneto-optical devices, 

visible light photodetectors, LEDs, magneto-

optical devices, nonlinear optical materials, 

and others [3-14]. 

Zinc telluride (ZnTe) stands out as a leading 

material in this category of semiconductor 

compounds. The transparency of this p-type 

binary compound semiconductor to photons 

with energy levels below 2.26eV makes it an 

attractive choice for back contact with thin film 

solar cells [15-16]. ZnTe as a back contact in 

thin solar cells is aimed to enhance the overall 

performance of the solar cell by facilitating 

better light absorption and electron-hole pair 

generation within the thin film based solar cell 

configuration [17]. ZnTe is favoured for 

application in light-emitting diodes (LEDs) due 

to its advantageous direct band gap energy 

[18-20].  

Furthermore, the band gap of ZnTe had 

been tuned by metal and non-metal ion doping 

such as Al [20-21], Sn [18,22-23], Cu [24-26], 

Sb [18,22,27-28], Bi [29], As [30], Cd [31-32], N 

[33], and P [34-35]. This possibility of tuning 

by dopants positioned ZnTe as potential 

candidate for various industrial applications. 

ZnTe thin films have been deposited using 

various techniques such as thermal 

evaporation [23,29,36-37], close space 
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sublimation (CSS) [38-39], glancing angle 

technique [40], chemical bath [19, 41-42], 

electrodeposition [43-47], pulsed laser 

deposition [48-49], reactive radiofrequency 

[33], metalorganic chemical vapor deposition 

(MOCVD) [30], and radio-frequency magnetron 

sputtering [50-51]. 

Electrochemical deposition, also known as 

electrodeposition or electroplating, is a 

versatile and widely used technique for 

depositing thin films and coatings onto 

conductive substrates. It involves the reduction 

of metal ions from a solution onto a conductive 

surface under the influence of an electric field 

[52]. This deposition technique presents 

several benefits, such as precise management 

of film characteristics, the ability to coat 

conformally, fast deposition rates, cost-

effective, suitability for multicomponent 

setups, eco-friendliness and flexibility [53-54]. 

These factors make it a preferred choice for 

thin film fabrication in various fields, ranging 

from microelectronics and optoelectronics to 

corrosion protection and decorative coatings. 

Many researchers such as [55-62] have 

reported the use of electrodeposition in the 

synthesis of binary, ternary, and quaternary 

thin films. 

The motivation for the work arose from the 

fact that there is no literature available on the 

impact of deposition potential on the structural 

and optical properties of electrodeposited 

antimony doped zinc telluride (Sb:ZnTe) thin 

films. Reports from literatures on antimony 

doped zinc telluride thin films as presented by 

[18,22,27-28] showed no information on the 

effect of deposition potential on the optical and 

structural properties of Sb:ZnTe thin films. The 

purpose of this research is to address this 

literature gap by investigating the effect of 

deposition potential on the structural and 

optical properties of Sb:ZnTe thin films 

synthesized via electrodeposition. Specifically, 

we aim to elucidate how different deposition 

potentials influence the structural and optical 

properties of electrodeposited Sb:ZnTe thin 

films. 

Experimental  

Reagents 

The electrodeposition of antimony-doped 

zinc telluride (Sb:ZnTe) involved the use of 

antimony trichloride (SbCl3) and zinc (II) 

acetate dihydrate (Zn(CH3CO2)2·2H2O) as 

precursors for antimony and zinc, respectively. 

Tellurium dioxide (TeO2) served as the 

precursor for telluride ions, sodium sulfate 

acted as the supporting electrolyte, H2SO4 was 

used as pH adjuster and distilled water was 

utilized as the solvent medium. 

Apparatus 

The experimental setup utilized various 

apparatus, including 100 mL beakers for 

solution mixing, fluorine-doped tin oxide (FTO) 

glass substrates as working electrodes, an 

electronic compact scale for precise reagent 

measurements, and a magnetic stirrer hotplate 

for solution agitation. The electric energy was 

delivered by a DC power supply while the 

potential and current of the deposition were 

measured using digital multimeters. The 

reference electrode was an Ag/AgCl electrode, 

while the counter electrode was a platinum 

rod. Substrate degreasing was accomplished 

using an ultrasonic bath, and drying during the 

post-deposition heat treatment was made 

easier by an electrical oven. 

Material preparation  

Molar solutions of the reagents prepared for 

the deposition include: 
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(1) Zinc (II) acetate dihydrate solution (0.20 

M): Dissolve 4.39 grams of zinc (II) acetate 

dihydrate in 100 milliliters of distilled water. 

(2) Antimony trichloride solution (0.05 M): 

Dissolve 1.14 grams of antimony trichloride 

in 100 milliliters of distilled water. 

(3) Tellurium (IV) oxide solution (0.10 M): 

Dissolve 1.60 grams of TeO2 in 100 

milliliters of distilled water. 

(4) Sodium sulphate (Na2SO4) solution (0.05 

M): Dissolve 8.06 grams of sodium sulphate 

in 500 milliliters of double-distilled water. 

(5) Zinc (II) acetate dihydrate, antimony 

trichloride, tellurium dioxide aqueous 

solutions were used as precursors for Zn, Sb, 

and Te ions while sodium sulphate was 

employed as a supporting electrolyte. In 

addition, the pH of the electrolytic bath was 

adjusted using 1.0 M H2SO4. 

Substrate pre-treatment 

Four distinct processes were employed for 

the cleaning of fluorine-doped tin oxide (FTO) 

glass substrates before used in 

electrodeposition of films. These four 

processes are depicted in Figure 1. 

Electrosynthesis of antimony doped zZinc 

tellurium thin films 

Figure 2 illustrates the electrodeposition setup, 

which is made-up of the electrolyte, electrodes, 

and power supply unit. The electrodeposition 

setup of [63] was employed in this research 

work. As shown in Figure 2, the configuration 

involved a three-electrode electrodeposition 

setup which are working, reference and 

counter electrodes. 

The working electrode, serving as the cathode, 

was the conducting substrate (FTO). A 

platinum electrode was used as the anode 

(counter electrode). A reference electrode of 

Ag/AgCl was utilized in the deposition of the 

thin film. The electrodeposition setup was 

powered by the Dazheng digital DC-power 

supply unit (PS-1502A) model. Two digital 

multimeters (DT9201A CE and Mastech MY60) 

were employed to measure deposition 

potential and current, respectively. 

 

Figure 1. Pre-treatment steps for cleaning of FTO achieving optimal film quality. 
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Figure 2. Schematic diagram of the electrodeposition experimental set up [63]. 

To deposit antimony doped zinc telluride 

thin films onto a FTO substrate using 

electrodeposition, a homogeneous aqueous 

electrolytic bath was formed by mixing 15 mL 

of 0.20 M zinc (II) acetate dihydrate. 10 mL of 

0.05 M of antimony trichloride and 5 mL of 

concentrated 1 M of H2SO4. The mixture was 

properly mixed using a magnetic stirrer for a 

duration of 5 minutes. This follows with the 

addition of 15 mL of 0.10 M tellurium dioxide 

and 5 mL of 0.05 M Na2SO4. The resultant 

solution was employed after five more minutes 

of magnetic stirring. After that, the three 

electrodes were submerged in the electrolytic 

bath and kept at a steady 2.5-volt potential for 

precisely sixty seconds. To improve the 

characteristics of the deposited Sb:ZnTe thin 

film, the deposited layer was then thermally 

treated for 20 minutes at 100 °C. At various 

deposition potentials of 3.0, 3.5, 4.0, and 4.5 

volts, four additional antimony-doped zinc 

telluride thin films were deposited. The 

mechanism of the formation of antimony 

doped zinc telluride is shown in Equation (1). 

   𝑍𝑛2+ + 𝑇𝑒4+ + 𝑆𝑏3+ + 2𝑒− ⟶ 𝑍𝑛𝑇𝑒: 𝑆𝑏   (1) 

At the cathode (working electrode), Zinc 

ions (Zn2+), antimony ions (Sb3+), and tellurium 

ions (Te4+) were reduced through electron 

transfer which lead to the deposition of the Zn, 

Sb, and Te metals. The simultaneous reduction 

of zinc, tellurium, and antimony ions results in 

the formation of the compound Sb:ZnTe on the 

electrode surface. 

Characterization of deposited superlattice 

The deposited antimony doped zinc 

telluride thin films were subjected to film 

thickness measurement using gravimetric 

method. Optical, electrical, and structural 

properties were also studied. Optical 

properties were carried out using 756S UV-Vis 

spectrophotometer. Structural analysis of the 

films was obtained using Drawell x-ray 

diffractometer. 
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Figure 3. Graph of thickness against deposition potential. 

Results and Discussions  

Film thickness measurement 

The thickness of the film was determined 

using the mass difference method, as described 

in Equation (2) in references [65-66]. 

     (t) =
𝛥𝑚

𝜌𝐴
,                 (2) 

Where, A is the area of the substrate 

covered by the deposited thin films, ρ is the 

bulk density of ZnTe (assumed to be 6.34 

g/cm³), and Δm is the mass difference found by 

measuring the substrate mass before and after 

the deposition. 

A graph of the thickness of Sb-doped ZnTe 

film plotted against the deposition potential is 

presented in Figure 3. As the deposition 

potentials rose from 2.5 volts to 4.5 volts, the 

film thickness went up from 126.18 nm to 378 

nm. Controlling the electrodeposition potential 

is crucial for achieving the desired film 

thickness and properties. As the deposition 

potentials increases, faster reduction rates are 

experienced by the ions resulting in thicker 

films because more metal ions are being 

reduced and deposited. This result is similar to 

the increase in thickness as deposition 

potential increases as obtained by [67-68].  

 

Structural analysis 

In Figure 4, the x-ray diffraction spectra of 

the thin films composed of Sb-doped ZnTe 

deposited on electrodes are presented. The 

diffractograms illustrate an x-ray pattern 

consistent with the hexagonal phase of ZnTe, 

as indicated by the JCPDS file number (00-019-

1482). Structural phase of ZnTe obtained in 

this work is similar to those obtained by [69-

70]. Equation (4) demonstrates how the 

Debye–Scherrer formula was used to calculate 

the crystallite sizes of the thin films that were 

deposited [71-72]. 

    𝐷 =
0.9 𝜆

 𝛽 𝑐𝑜𝑠 𝜃
         (3) 

Dislocation densities of the deposited Sb 

doped ZnTe were calculated using Equation (4) 

as given by [73-74]. 

    𝛿 =
1

𝐷2`                          (4) 

Microstrains of the deposited Sb doped 

ZnTe were calculated using Equation (5), 

respectively, as given by [75-76]. 

 𝜀 =
𝛽

4 tan 𝜃
         (5) 

Table 1 indicates the structural parameters 

of the Sb-doped ZnTe thin films that were 

deposited. In addition, Figures 5(a-c) 

illustrates the relationship between deposition 
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potential and key structural characteristics, 

namely crystallite size (d), dislocation density 

(𝛿), and microstrain (𝜀). The crystallite size of 

the films ranges from 23.88 nm to 33.00 nm. 

The increase in crystallite size, as shown in 

Figure 5(a) often indicates improved structural 

phase. Larger crystallites generally have fewer 

grain boundaries. The increased crystalline 

structure of the films as a result of the higher 

deposition potential is responsible for the 

observed heightened intensity. Figures 5 (b 

and c) demonstrate that when deposition 

potential increases, dislocation density, and 

microstrain trend downward. A decrease in 

microstrain and dislocation density points to a 

reduced density of crystal defects. A more well-

organized and flawless crystal lattice is 

facilitated by fewer dislocations and reduced 

microstrain. 

 
Figure 4. Diffractograms of antimony doped zinc telluride thin films deposited at varying potentials. 

 

Figure 5. Variation of structural parameters (a) crystallite size (D), (b) dislocation density (𝛿) and 

microstrain (𝜀) with deposition potentials. 
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Table 1. Structural parameters of electrodeposited antimony doped zinc telluride thin film 

2 θ (◦) d – spacing (nm) FWHM (◦) D (nm) 𝜹 𝒙 𝟏𝟎𝟏𝟓 

Lines/m2 

𝜺 𝒙 𝟏𝟎−𝟑 

23.255 3.822 0.543 15.595 4.112 11.518 

26.715 3.334 0.315 27.046 1.367 5.794 

37.943 2.369 0.302 29.071 1.183 3.831 

51.732 1.766 0.291 31.728 0.993 2.616 

65.831 1.418 0.620 15.939 3.936 4.180 

 23.876 2.318 5.588 

      
23.823 3.732 0.391 21.46 2.172 8.175 

26.715 3.334 0.408 20.91 2.287 7.495 

37.943 2.369 0.395 22.22 2.026 5.013 

51.732 1.766 0.285 32.39 0.953 2.562 

65.775 1.419 0.305 32.43 0.951 2.056 

 25.92 1.678 5.060 

      23.873 3.724 0.265 31.98 0.978 5.474 

26.765 3.328 0.478 17.85 3.139 8.764 

37.993 2.366 0.293 29.75 1.13 3.738 

51.782 1.764 0.285 32.39 0.953 2.560 

65.825 1.418 0.305 32.44 0.95 2.054 

 28.95 1.43 4.518 

      

23.847 3.728 0.248 34.16 0.857 5.129 

26.739 3.331 0.412 20.70 2.334 7.564 

37.967 2.368 0.238 36.88 0.735 3.018 

51.756 1.765 0.287 32.10 0.97 2.584 

65.799 1.418 0.309 31.98 0.978 2.084 

 31.17 1.175 4.076 

      

23.263 3.821 0.325 26.09 1.469 6.883 

26.715 3.334 0.305 27.97 1.278 5.603 

37.944 2.369 0.287 30.52 1.073 3.648 

51.733 1.766 0.255 36.1 0.767 2.299 

65.775 1.419 0.223 44.32 0.509 1.504 

 33.00 1.019 3.987 

 

Optical analysis 

UV-Vis spectroscopy was employed to analyse 

the optical properties of electrodeposited thin 

films of antimony-doped zinc telluride (ZnTe) 

across a wavelength range of 400 nm to 1100 

nm. The choice of the wavelength is because 

this range corresponds to the visible and near-

infrared (NIR) regions of the electromagnetic 

spectrum. As depicted in Figure 6, the 

absorbance of the antimony- doped ZnTe thin 

films exhibits a decline as the wavelength 

increases from 400 nm to 1100 nm. Moreover, 

a rise in absorbance is observed with an 

increase in the deposition potential from 2.5 

volts to 4.5 volts. The absorbance values were 

observed to vary between 33% and 54%. 
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Figure 6. Absorbance spectra as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin 

films at varied deposition potentials.

The graph in Figure 7 depicts transmittance 

spectra plotted against wavelength. As the 

wavelength increases from 400 nm to 1100 

nm, the transmittance values of the films also 

increase. However, when the deposition 

potential increases, the transmittance 

decreases. These films exhibit moderate 

transmittance within the visible (VIS) region 

and high transmittance within the near-

infrared (NIR) region, with transmittance 

values ranging from 28.50% to 48.0%. 

Figure 8 depicts the reflectance spectra of 

the films plotted against wavelength from 400 

nm to 1100 nm. The reflectance values of the 

deposited thin films were consistently lower 

than 20.5%. The spectra illustrate a continuous 

decrease in reflectance as the wavelength 

increases for deposition potentials of 2.5 volts 

and 3.0 volts. With increasing deposition 

potential, reflectance is observed to rise within 

the VIS region and decline within the NIR 

region. Minimal reflectance values were 

observed within the NIR regions, indicating 

suitability for antireflective coating in smart 

window applications [65]. 

Figure 9 presents a graph of refractive index 

plotted against wavelength at different 

deposition potentials. The refractive indices of 

the films fall within the range of 2.40 to 2.63. 

Interestingly, the refractive index values 

decrease as the wavelength increases. 

However, when the deposition potential varies 

from 2.5 to 3.0 volts, the refractive index 

increases, and then it decreases again from 3.5 

volts to 4.5 volts. 

 
Figure 7. Transmittance spectra as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin 

films at varied deposition potentials. 
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Figure 8. Reflectance spectra as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin 

films at varied deposition potentials. 

 
Figure 9. Refractive index as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin films 

at varied deposition potentials. 

Figure 10 displays the graph depicting the 

extinction coefficient (𝑘) of antimony-doped 

zinc telluride thin films. The values were 

observed to rise with increasing wavelength 

across the studied spectrum (400 nm to 1100 

nm) and decrease with higher deposition 

potential. Within the visible (VIS) region (400 

nm to 700 nm), 𝑘 values of the thin films 

ranged from 1.85 to 1.03, indicating effective 

photon energy absorption. Specifically, at 

deposition potentials of 2.5 volts, 3.0 volts, 3.5 

volts, 4 volts, and 4.5 volts, 𝑘 values ranged 

from 1.85 to 2.93, 1.24 to 1.97, 1.21 to 1.96, 

1.04 to 1.75, and 1.03 to 1.68, respectively. The 

𝑘 measures the light absorption strength at a 

given wavelength. The spectrum of extinction 

coefficient values verifies the suitability of 

these films for application as absorber layers in 

thin-film solar cells. 

In Figure 11, the relationship between 

(αhv)² and photon energy is demonstrated for 

antimony-doped zinc telluride (Sb:ZnTe) thin 

films deposited at different deposition 

potentials. By extrapolating the linear part of 

the graph along the photon energy axis, the 

energy band gaps of these films were 

estimated. Specifically, a band gap of 2.00 eV 

was obtained for antimony-doped zinc 

telluride thin film deposited at 2.5 volts. For 

films deposited at 3.0 volts, 3.5 volts, 4.0 volts 

and 4.5 volts, the band gaps were found to be 

1.95 eV, 1.90 eV, 1.90 eV, and 1.85 eV, 
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respectively. These results indicate a decrease 

in the energy band gap of the films as the 

deposition potential increases, suggesting the 

possible adjustment of energy band gap of 

antimony-doped zinc telluride by varying the 

deposition potential. These findings suggest 

that as the deposition potential increases, there 

is a decrease in the energy band gap of the 

films, implying the possibility of adjusting the 

energy band gap of antimony-doped zinc 

telluride by varying the deposition potential. 

 
Figure 10. Extinction coefficient as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin 

films at varied deposition potentials 
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Figure 11. (αhv)2 as a function of wavelength for antimony-doped zinc telluride (Sb:ZnTe) thin films at 

varied deposition potentials 
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These range of energy bandgap values 

positioned Sb:ZnTe thin films as potential 

materials for top junction (absorber layer) of a 

multijunction solar cells. The decrease in band 

gap of the Sb:ZnTe thin films as deposition 

potential increased from 2.5 volts to 4.5 volts 

could be attributed to improvement in the 

crystallinity and structural defects in the 

deposited films. These changes in grain size 

and crystallinity can impact the electronic band 

structure thereby modifying the band gap of 

the films. [75,77-79] have reported similar 

decrease in energy band gap of thin films as 

deposition potentials increases. 

Conclusion 

To sum up, the investigation into the 

electrodeposited antimony-doped zinc 

telluride (Sb:ZnTe) thin films has provided 

valuable insights into the influence of 

deposition potential on their structural and 

optical properties. The observed increase in 

film thickness, ranging from 126.18 nm to 

378.55 nm, as the deposition potentials 

increased from 2.5 volts to 4.5 volts, 

underscores the critical role of control in 

achieving the desired film characteristics. 

Structural analysis done with X-ray diffraction, 

not only confirmed the hexagonal phase of 

ZnTe, but also revealed a substantial 

enhancement in crystallite size, ranging from 

23.88 nm to 33.00 nm, and a simultaneous 

decrease in dislocation density and microstrain 

with higher deposition potential. The optical 

properties exhibited distinctive trends, with 

absorbance values ranging from 33% to 54%, 

transmittance from 28.50% to 48.0%. The 

energy band gap demonstrated tunability, 

decreasing from 2.00 eV at 2.5 volts to 1.85 eV 

at 4.5 volts. 

The optical properties, characterized by 

tunable energy band gaps, absorbance values, 

and high transmittance in the near-infrared 

region, indicate the potential suitability of 

these films for applications in solar energy 

harvesting, antireflective coatings, and 

transparent conductive coatings. The refractive 

indices spanning 2.40 to 2.63 further hint at 

their use in optical devices requiring controlled 

refractive properties. These distinction 

findings underscore the pivotal role of 

deposition potential in tailoring Sb:ZnTe thin 

films for specific applications, providing 

quantifiable insights into their optimization for 

thin-film solar cells, antireflective coatings, and 

the other optoelectronic devices.  
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