Document Type : Original Article


Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran


Biochar is a cost-effective and porous material with high carbon content. It is considered as an effective supporting matrix owing to its high specific surface area and notable ion exchange ability. In this work, a porous biochar support was fabricated from pistachio residues using pyrolysis procedure. Subsequently, various crystalline phases and morphologies of MnO2 were deposited onto the biochar support through chemical protocols with Mn(Ac)2, KMnO4, and MnSO4 as Mn source. The N2 adsorption-desorption experiments were employed to characterize the porosities and specific surface areas of the synthesized nanocomposites. It is found that the γ-MnO2/biochar composite possessed the higher surface area than the δ-MnO2 and α-MnO2 samples. The adsorption features of the composite materials in the removement of target dye from aqueous solution were also examined. Based on the experimental results, the γ-MnO2/biochar sample showed the highest efficiency for removal of target dye. In addition, the experimental data exhibited a good correlation (R2 greater than 0.99) with the pseudo-second-order kinetic model, indicating a chemical adsorption approach for dye adsorption.

Graphical Abstract

Fabrication of various morphologies of MnO2 nanostructures on biochar support for dye removal application



©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Sami Publishing Company

[1]. Zhang F., Zhou Y.k., Li H. Mater. Chem. Phys., 2004, 83:260 [Crossref], [Google Scholar], [Publisher]
[2]. Saadh M.J., Roy H., Ademi E. J. Med. Pharm. Chem. Res,. 2022, 4:1033 [Crossref], [Google Scholar]
[3]. Ikhioya I.L., Rufus I., Ifeyinwa Akpu N., J. Med. Nanomater. Chem., 2022, 4:88 [Crossref], [Publisher]
[4]. Fathy N.A., El-Shafey S.E., El-Shafey O.I., Mohamed W.S. J. Environ. Chem. Eng., 2013, 1:858 [Crossref], [Google Scholar], [Publisher]
[5]. Abegunde S.M., Idowu K.S. Eurasian J. Sci. Technol., 2023, 3:109 [Crossref], [Publisher]
[6]. Xu J.J., Zhao W., Luo X.L., Chen H.Y. Chem. Comm., 2005, 792 [Crossref], [Google Scholar], [Publisher]
[7]. Lume-Pereira C., Baral S., Henglein A., Janata E. J. Phys. Chem., 1985, 89:5772 [Crossref], [Google Scholar], [Publisher]
[8]. Horváth O., Strohmayer K. J. Photochem. Photobiol., A, 1998, 116:69 [Crossref], [Google Scholar], [Publisher]
[9]. Wang X., Li Y. J. Am. Chem. Soc., 2002, 124:2880 [Crossref], [Google Scholar], [Publisher]
[10]. Wu M.S., Lee J.T., Wang Y.Y., Wan C.C. J. Phys. Chem. B., 2004, 108:16331 [Crossref], [Google Scholar], [Publisher]
[11]. Wang L., Ebina Y., Takada K., Sasaki T. Chem. Comm., 2004, 1074 [Crossref], [Google Scholar], [Publisher]
[12]. Lu H., Zhang X., Khan S.A., Li W., Wan L. Front. Microbiol., 2021, 12:761084 [Crossref], [Google Scholar], [Publisher]
[13]. Pandey A., Singh P., Iyengar L. Int. Biodeter. Biodegr., 2007, 59:73 [Crossref], [Google Scholar], [Publisher]
[14]. Bagheri Sadr M., Samimi A., Adv. J. Chem., Sect. B, 2022, 4:174 [Crossref], [Publisher]
[15]. Aboshaloa E., Asweisi A., Almusrati A., Almusrati M., Aljhane H. J. Med. Nanomater. Chem., 2022, 5:234 [Crossref], [Publisher]
[16]. Mohammed Alkherraz A., Elsherif K.M., El-Dali A., Blayblo N.A., Sasi M. J. Med. Nanomater. Chem.,. 2022, 4:118 [Crossref], [Publisher]
[17]. Fayazi M., Ghanei-Motlagh M., Taher M.A. Mater. Sci. Semicond. Process., 2015, 40:35 [Crossref], [Google Scholar], [Publisher]
[18]. Fayazi M. Environ. Sci. Pollut. Res., 2020, 27:12270 [Crossref], [Google Scholar], [Publisher]
[19]. Yang R., Fan Y., Ye R., Tang Y., Cao X., Yin Z., Zeng Z. Adv. Mater., 2021, 33:2004862 [Crossref], [Google Scholar], [Publisher]
[20]. Zhai R., Wan Y., Liu L., Zhang X., Wang W., Liu J., Zhang B. Water Sci. Technol., 2012, 65:1054 [Crossref], [Google Scholar], [Publisher]
[21]. Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. J. Ind. Eng. Chem., 2019, 78:21 [Crossref], [Google Scholar], [Publisher]
[22]. Afzali D., Fayazi M. J. Taiwan Inst. Chem. Eng., 2016, 63:421 [Crossref], [Google Scholar], [Publisher]
[23]. Li J., Cai X., Liu Y., Gu Y., Wang H., Liu S., Liu S., Yin Y., Liu S. Front. Environ. Sci., 2020, 8:62 [Crossref], [Google Scholar], [Publisher]
[24]. Moghaddam H.K., Pakizeh M. J. Ind. Eng. Chem., 2015, 21:221 [Crossref], [Google Scholar], [Publisher]
[25]. Liu Y., Luo C., Cui G., Yan S. RSC adv., 2015, 5:54156 [Crossref], [Google Scholar], [Publisher]
[26]. Premarathna K., Rajapaksha A.U., Sarkar B., Kwon E.E., Bhatnagar A., Ok Y.S., Vithanage M. Chem. Eng. J., 2019, 372:536 [Crossref], [Google Scholar], [Publisher]
[27]. Wang S., Zhao M., Zhou M., Li Y.C., Wang J., Gao B., Sato S., Feng K., Yin W., Igalavithana A.D. J. Hazard. Mater., 2019, 373:820 [Crossref], [Google Scholar], [Publisher]
[28]. Thines K., Abdullah E., Mubarak N., Ruthiraan M. Renew. Sust. Energ. Rev., 2017, 67:257 [Crossref], [Google Scholar], [Publisher]
[29]. Wang J., Wang S. J. Clean. Prod., 2019, 227:1002 [Crossref], [Google Scholar], [Publisher]
[30]. Li L., Zou D., Xiao Z., Zeng X., Zhang L., Jiang L., Wang A., Ge D., Zhang G., Liu F. J. Clean. Prod., 2019, 210:1324 [Crossref], [Google Scholar], [Publisher]
[31]. Al-Layla A.M., Fadhil A.B. Chem. Methodol., 2022, 6:10 [Crossref], [Publisher]
[32]. Dai Y., Zhang N., Xing C., Cui Q., Sun Q. Chemosphere, 2019, 223:12 [Crossref], [Google Scholar], [Publisher]
[33]. Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. Chemosphere, 2014, 99:19 [Crossref], [Google Scholar], [Publisher]
[34]. Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. Chemosphere, 2015, 125:70 [Crossref], [Google Scholar], [Publisher]
[35]. Nejadshafiee V., Islami M.R. Environ. Sci. Pollut. Res., 2020, 27:1625 [Crossref], [Google Scholar], [Publisher]
[36]. Fayazi M., Ghanei-Motlagh M. J. Colloid Interface Sci., 2021, 604:517 [Crossref], [Google Scholar], [Publisher]
[37]. Nawaz F., Cao H., Xie Y., Xiao J., Chen Y., Ghazi Z.A. Chemosphere, 2017, 168:1457 [Crossref], [Google Scholar], [Publisher]
[38]. Devaraj S., Munichandraiah N. J. Phys. Chem. C, 2008, 112:4406 [Crossref], [Google Scholar], [Publisher]
[39]. Revathi C., Kumar R.R. Electroanalysis, 2017, 29:1481 [Crossref], [Google Scholar], [Publisher]
[40]. Mendoza R., Rodriguez-Gonzalez V., Zhakidov A., Cherepanov S., Mtz-Enriquez A., Oliva J. J. Phys. D: Appl. Phys., 2021, 54:315502 [Crossref], [Google Scholar], [Publisher]
[41]. Taeh A.S., Abdul-Hamead A.A., Othman F.M. Chem. Methodol., 2022, 6:428 [Crossref], [Publisher]
[42]. Fayazi M., Afzali D., Taher M., Mostafavi A., Gupta V. J. Mol. Liq., 2015, 212:675 [Crossref], [Google Scholar], [Publisher]
[43]. Diao H., Zhang Z., Liu Y., Song Z., Zhou L., Duan Y., Zhang J. Cellulose, 2020, 27:7053 [Crossref], [Google Scholar], [Publisher]
[44]. Parekh P., Parmar A., Chavda S., Bahadur P. J. Dispers. Sci. Technol., 2011, 32:1377 [Crossref], [Google Scholar], [Publisher]
[45]. Fayazi M., Ghanbarian M. Silicon, 2020, 12:125 [Crossref], [Google Scholar], [Publisher]
[46]. Fayazi M. Anal. Bioanal. Chem. Res., 2019, 6:125 [Crossref], [Google Scholar], [Publisher]