Document Type : Original Article

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Nanotechnology Department, School of Advanced Technologies, Iran University of Science & Technology (IUST), Tehran, Iran

10.48309/JMNC.2020.4.4

Abstract

Nowadays, metal-organic framework (MOF)-derived porous metal oxide nanoparticles (NPs) has attracted a great attention for remediation of environmental contamination. This work discussed the synthesis approach of the porous and single-phase TiO2 NPs via the thermal treatment of MIL-125 (Ti) at various temperatures. The influences of temperature on the single-phase synthesis and degree of crystallinity of this nanomaterial were investigated. It was revealed that 500 °C was the optimum temperature for the synthesis of anatase phase of nano-titania. The TiO2 NPs produced by heat-treating at 500 °C was found to have a mean particle size of less than 10 nm, specific surface area of 163 m2g-1, and pore volume of 0.374 cm3g-1. The optical properties of the anatase phase of TiO2 were examined and the value of its indirect energy gap (or band gap) was obtained to be 3.08 eV. High specific surface area and porous structure of the anatase TiO2 made it a suitable candidate for the photocatalyst agent. This is due to the fact that it increases the loading capacity of the organic pigments and prolongs the light exposure duration. As-synthesized TiO2 NPs exhibited a high photocatalytic performance for removal of methylene blue (MB), methylene orange (MO) and reactive blue 21 (RB21) organic pigments.

Graphical Abstract

Photocatalytic degradation of industrial pigments by mil-125 derived porous Titanium Dioxide (TiO2) nanoparticles

Keywords

[1]. Lu G., Huang X., Li Y., Zhao G., Pang G., Wang G. J. Energy Chem., 2020, 43:8
[2]. Zhen H.G., Mao H., Ul-Haq I., Li S.H., Ahmad A., Zhao Z.P. Sep. Purif. Technol., 2019, 233:116042
[3]. Walle M.D., Zhang M., Zeng K., Li Y., Liu Y.N. Appl. Surf. Sci., 2019, 497:143773
[4]. Du Y., Li G., Chen M., Yang X., Ye L., Liu X., Zhao L. Chem. Eng. J., 2019, 378:122210
[5]. Li S., Zhang L., Liang X., Wang T., Chen X., Liu C., Li L., Wang C. Chem. Eng. J., 2019, 378:122175
[6]. Ma C., Li Y., Nian P., Liu H., Qiu J., Zhang X. Sep. Purif. Technol., 2019, 229:115835
[7]. Zhang Y., Ji L., Zheng Y., Liu H., Xu X. Sep. Purif. Technol., 2020, 234:116124
[8]. Lin Y., Sun Y., Dai Y., Sun W., Zhu X., Liu H., Han R., Gao D., Luo C., Wang X. Talanta, 2020, 207:120300
[9]. Esfahanian M., Ghasemzadeh M.A., Razavian S.M.H. Artif. Cells, Nanomedicine Biotechnol., 2019, 47:2024
[10]. Ma J., Wang H., Yang X., Chai Y., Yuan R. J. Mater. Chem. A, 2015, 3:12038
[11]. Guan C., Sumboja A., Wu H., Ren W., Liu X., Zhang H., Liu Z., Cheng C., Pennycook S.J., Wang J. Adv. Mater., 2017, 29:1704117
[12]. Xia H., Zhang J., Yang Z., Guo S., Guo S., Xu Q. Nano-Micro Lett., 2017, 9:43
[13]. Li Y., Xu Y., Yang W., Shen W., Xue H., Pang H. Small, 2018, 14:1704435
[14]. Adarsh N.N. Metal–organic framework (MOF)–derived metal oxides for supercapacitors, In: Dubal D.P., Gomez-Romero P. (Eds.), Metal Oxides in Supercapacitors, Elsevier: Amsterdam, 2017, p 165
[15]. Liu Q., Jin L.N., Sun W.Y. Chem. Commun., 2012, 48:8814
[16]. Li Y., Fu Z.Y., Su B.L. Adv. Funct. Mater., 2012, 22:4634
[17]. Sajjadifar S., Arzehgar Z., Khoshpoori S. J. Inorg. Organomet. Polym. Mater., 2017, 28:837
[18]. Sajjadifar S., Arzehgar Z., Ghayuri A. J. Chin. Chem. Soc., 2018, 65:205
[19]. Meng W., Chen W., Zhao L., Huang Y., Zhu M., Huang Y., Fu Y., Geng F., Yu J., Chen X., Zhi C. Nano Energy, 2014, 8:133
[20]. Lou X.W., Deng D., Lee J.Y., Feng J., Archer L.A. Adv. Mater., 2008, 20:258
[21]. Liu Y., Wang G., Xu C., Wang W. Chem. Commun., 2002, 2:1486
[22]. He T., Chen D., Jiao X., Wang Y., Duan Y. Chem. Mater., 2005, 17:4023
[23]. Maiti S., Pramanik A., Mahanty S. Chem. Commun., 2014, 50:11717
[24]. Valero-Romero M.J., Santaclara J.G., Oar-Arteta L., van Koppen L., Osadchii D.Y., Gascon J., Kapteijn F. Chem. Eng. J., 2019, 360:75
[25]. Finegold L., Cude J.L. Nature, 1972, 238:38
[26]. Higashimoto S. Catalysts, 2019, 9:201
[27]. Göltner C.G., Smarsly B., Berton B., Antonietti M. Chem. Mater., 2001, 13:1617
[28]. Wu M.C., Hiltunen J., Sápi A., Avila A., Larsson W., Liao H.C., Huuhtanen M., Tóth G., Shchukarev A., Laufer N., Kukovecz Á., Kónya Z., Mikkola J.P., Keiski R., Su W.F., Chen Y.F., Jantunen H., Ajayan P.M., Vajtai R., Kordás K. ACS Nano., 2011, 5:5025
[29]. Misra M., Singh N., Gupta R.K. Catal. Sci. Technol., 2017, 7:570
[30]. Hu H., Lin Y., Hu Y.H. Chem. Eng. J., 2019, 375:122029
[31]. Parvizi-Majidi A. Whiskers and Particulates, In: Kelly A., Zweben C. (Eds.), Comprehensive Composite Materials Vol. 1, Elsevier: Amsterdam, 2000, p 175
[32]. Hamad S., Catlow C.R.A., Woodley S.M., Lago S., Mejías J.A. J. Phys. Chem. B, 2005, 109:15741
[33]. Sabaghi V., Davar F., Fereshteh Z. Ceram. Int., 2018, 44:7545
[34]. Sabaghi V., Davar F., Sadat-Nabi A., Hasani S. Int. J. Appl. Ceram. Technol., 2019, 16:2322
[35]. Luttrell T., Halpegamage S., Tao J., Kramer A., Sutter E., Batzill M. Sci. Rep., 2014, 4:4043
[36]. Wang M., Song G., Li J., Miao L., Zhang B. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, 15:644
[37]. Irie H., Watanabe Y., Hashimoto K. J. Phys. Chem. B., 2003, 107:5483
[38]. Wang Z., Li X., Xu H., Yang Y., Cui Y., Pan H., Wang Z., Chen B., Qian G. J. Mater. Chem. A., 2014, 2:12571
[39]. Wei J., Zhao L., Peng S., Shi J., Liu Z., Wen W. J. Sol-Gel Sci. Technol., 2008, 47:311
[40]. Praveen P., Viruthagiri G., Mugundan S., Shanmugam N. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117:622
[41]. Nolan N.T., Seery M.K., Pillai S.C. J. Phys. Chem. C., 2009, 113:16151
[42]. Venkatasubbu G.D., Ramasamy S., Ramakrishnan V., Kumar J. Adv. Powder Technol., 2013, 24:947
[43]. Thamarai Selvi T.S., Prasanna A.P.S, Niranjan R., Kaushik M., Devasena T., Kumar J., Chelliah R., Oh D.H., Swaminathan S., Venkatasubbu G.D. Appl. Surf. Sci., 2018, 449:603
[44]. Khan M., Naqvi A.H., Ahmad M. Toxicol. Reports, 2015, 2:765
[45]. Zhu S.R., Liu P.F., Wu M.K., Zhao W.N., Li G.C., Tao K., Yi F.Y., Han L. Dalton Trans., 2016, 45:17521
[46]. Oveisi M., Asli M.A., Mahmoodi N.M. J. Hazard Mater., 2018, 347:123
[47]. Dan-Hardi M., Serre C., Frot T., Rozes L., Maurin G., Sanchez C., Ferey G. J. Am. Chem. Soc., 2009, 131:10857
[48]. Azami M.S., Nawawi W.I., Jawad A.H., Ishak M.A.M., Ismail K. Sains Malaysiana, 2017, 46:1309
[49]. Wang H., Yuan X., Wu Y., Zeng G., Chen X., Leng L., Wu Z., Jiang L., Li H. J. Hazard Mater., 2015, 286:187
[50]. Liang X.X., Wang N., Qu Y.L., Yang L.Y., Wang Y.G., Ouyang X.K. Molecules, 2018, 23:1524
[51]. Yang Z., Xu X., Liang X., Lei C., Cui Y., Wu W., Yang Y., Zhang Z., Lei Z. Appl. Catal. B Environ. 2017, 205:42
[52]. Mathew S., Kumar Prasad A., Benoy T., Rakesh P.P., Hari M., Libish T.M., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. J. Fluoresc. 2012, 22:1563
[53]. Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., De Coss R., Oskam G. Nanotechnol. 2008, 19:145605
[54]. Tang R., Xie Z., Zhou S., Zhang Y., Yuan Z., Zhang L., Yin L. ACS Appl. Mater. Interfaces, 2016, 8:22201
[55]. Aflaki M., Davar F. J. Mol. Liq., 2016, 221:1071
[56]. Guerra W.N.A., Santos J.M.T., De Araujo L.R.R. Water Sci. Technol., 2012, 66:158
[57]. Davar F., Majedi A., Mirzaei A. J. Am. Ceram. Soc., 2015, 98:1739