

Review Article

Understanding the mechanism of electrochemical reduction of CO₂ using Cu/Cu-based electrodes: A review

Pigewh Isa Amos^a, Hitler Louis^{b,c}, Kayode Adesina Adegoke^{d,e*}, Ededet Akpan Eno^b; Akakuru Ozioma Udochukwu^{b,f}, Thomas Odey Magu^b

^a Department of Chemistry, School of Physical Sciences, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria

^b Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria

^c CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

^d Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa

e Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

f Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China

ARTICLE INFORMATION

ABSTRACT

Received: 30 August 2022 Received in revised: 27 September 2022 Accepted: 06 October 2022 Available online: 01 December 2022

DOI: 10.48309/JMNC.2022.4.2

KEYWORDS

Copper Electrode Catalyst Mechanism CO₂ Reduction Selectivity Interestingly, copper has been identified as an ideal metal catalyst for an industrial scale electrochemical reduction of CO_2 to various value-added chemicals relative to other metal catalysts reported so far. This is due to the fact that copper and copper based materialshave the potential to convert CO_2 to oxygenates such as ethanol, methanol, formates etc. and hydrocarbons such as ethane, methane etc. Mechanistic details on how these products are formed on the catalystelectrolyte interphase during the reduction process have remained relatively uncovered. This review, therefore, seeks to uncover the mechanism of electrochemical reduction of CO_2 on Cu/Cu based electrodes, factors that affect catalytic activity and selectivity for these electrodes as reported in various literatures. This paper is, therefore, organized as follows: section 1 covers the introduction; an overview of some basic concepts in electrochemical CO_2 reduction (ECR) was discussed in section 2, experimental studies were discussed in section 3, and, finally, we have conclusion

Graphical Abstract

Introduction

Since the industrial revolution of the 19th century, the global trend in technological advancement has always been on the increase, and so is the exploitation of fossil fuels (i.e., coal, petroleum and natural gas) as the main source of energy in order to sustain our economies and societies. These fossil fuels as non-renewable energy sources get depleted on an increasing basis which gives rise to a series of problems [1–3]. On the one hand, the aforementioned advancement, coupled with rapid population growth has resulted to increased energy demand, while fossil fuels as non-renewable resources have very limited reserves, which is gradually leading towards an aggravated energy crisis. Due to the huge consumption of fossil fuels, carbon dioxide (CO_2) as one of the by-product of the combustion of fossil fuels has been constantly emitted and kept accumulated in the atmosphere year by year. Various studies have shown that, the concentration of atmospheric CO₂ as of 22th July, 2017 is as high as 406.38 parts per million (ppm), which far exceeds the threshold safety value of 350 ppm

for atmospheric CO₂ [4].This increased in CO₂ levels has been associated with undesirable climatic effects such as global warming, desertification, rising sea levels, and more erratic weather patterns. Therefore, alleviating the effects caused by the heavy CO₂ emission has become a pressing issue to the modern society [5, 6]. Different strategies have been adopted for the reduction of CO₂ emission and mitigating climatic change which include; the use of clean renewable energy sources such as solar, wind and tide in place of fossil fuels, and direct capture and sequestration of CO₂ for a long time isolation from the atmosphere ("carbon capture and Storage" CCS) [7–10].

The captured CO_2 emissions can also be considered as a valuable resource because CO_2 can be catalytically converted into industrially relevant chemicals and fuels. This is an extremely attractive approach since it can reduce the carbon footprint associated with fossil-fuel-powered processes, thus allowing the sustainable use of current fossil-fuel resources, and generate revenue to offset the costs associated with other CO_2 capture, storage, and transport efforts. Several methods have been proposed for the conversion of CO₂ to value added chemicals; however. thermochemical. photochemical, and electrochemical CO_2 conversion are all promising catalytic approaches [11]. Electrochemical CO₂conversion technologies are appealing because they operate with high reaction rates and good efficiencies under ambient conditions, use environmentally benign aqueous electrolytes, easily couple with carbon-free electricity sources (e.g., wind, solar, hydroelectricity, etc.) and the reaction rate can be controlled easily by tuning the external bias (i.e., overpotential) [12]. Another benefit of electrochemical CO₂ conversion is that several voltage-dependent products are accessible, including formic acid, carbon monoxide, methane, and ethylene etc. [13, 14]. Although the electrochemical reduction of CO_2 to valueadded products has promised the high overpotential of this reaction, low selectivity and production rate, however, activity of the currently known catalysts still hampers this from becoming close process to commercialization. This is backed by the fact that typical current densities have been in the order of milliamps per square centimeter (mA/cm²) of electrode and catalyst surface whereas industrial water electrolyzers operates at the magnitude of 2A/cm² [15, 16]. Current researches in this field are aimed at obtaining an ideal catalyst, capable of electrochemical conversion of CO_2 at an industrial scale with improved efficiency, low overpotential and high selectivity towards a particular product. In this way, CO₂ electrochemical reduction to liquid fuels and other valueadded chemical feed stocks could become a sustainable way to store chemical energy in liquid forms.

Studies have shown that several metallic elements such as Cu, Au, In, Sn, Pb, Zn, Ag, Pd, Bi and Carbon based materials are catalytically active for the electrochemical CO₂ reduction in aqueous electrolytes [17-27]. However, several factors have been identified to affect the yield and type of products obtained during electrochemical reduction of CO₂. These factors include; the type, nature and morphology of the metal electrode used as the catalyst, the type of electrolyte used, the medium in which the reaction was conducted, the applied potential and reaction conditions such as temperature and pressure. These aforementioned metals with catalytic activity for the reduction of CO_2 are grouped into three classes based on the products obtained during major their electrochemical reaction. Elements such as Sn, Hg, Pb, and In, etc., are classed as group 1 metals because they generate formate or formic acid as their main products [21]. Au, Ag, Zn, and Pd are typical representatives of the group 2 metals whose predominant reaction product is CO [15, 16], whearas Cu is a representative of the group 3 family and greater attention is given to Cu/Cubased materials because it is the only catalyst known to electrochemically convert CO2 to hydrocarbons and/or oxygenates such as ethanol at considerably high Faradaic efficiency (FE)[28]. Intensive research efforts, both experimental and theoretical have focused on improving the overpotential and selectivity of Cu-based catalysts for the electrochemical reduction of CO₂ to specific products. Among the range of value-added chemicals into which CO₂ can be reduced to, ethanol and hydrocarbons receives more attention because of their economic importance and application as alternative sources of fuels (biofuels) other than fossils, they can also serve as feed stocks for various chemical industries.

Several quality reviews have been published which discussed the catalytic conversion of CO₂ to value added chemicals on various metal catalysts. However, few among such reviews were dedicated to Cu and Cu-based materials. This review, therefore, seeks to dig deep into the world of Cu/Cu related catalysts in order to understand the mechanism of electrochemical reduction of CO_2 taking into account, the effects of electrolytes, morphology of the catalysts, nature of the crystallites, effects of functional groups, surface modification, grain boundary, effects of cocatalysts, Cu overlayers, effects of product selectivity and many more.

The table presented in this review has been constructed using data from various sources. We have made as much effort as possible to present the data in a way that is useful to the reader, allowing one to compare results from different research groups, based on published results from various sources to generate all the relevant data. The quality of the published data, however, varied quite a bit and we had to make judicious choices in selecting relevant and reliable data.

An Overview of Some Basic Concepts in Electrochemical CO₂ Reduction (ECR)

Before delving deep into the world of electrochemical reduction of CO_2 to value-added chemicals on Cu and Cu-based materials, one needs to understand the fundamentals of this unique chemical process. Below is a brief overview of some important concepts used in the study of ECR:

Chemical/Thermodynamic stability of CO2

Carbon dioxide (CO_2) is a linear and nonpolar molecule, fully oxidized and extremely stable molecule. Inducing a chemical conversion from this stable state requires efficient and robust electrocatalysts to promote this kinetically sluggish reduction process. Therefore, a real-world catalysts often require large overpotentials (as can be seen where a single-electron reduction of CO_2 to form CO_2 require as high as -1.9 V vs RHE reduction potential; this high value is due to the rearrangement of the molecule from a linear to a bent structure.), to promote the reaction at satisfactory rates and product selectivity. The energy needed for CO_2 conversion should arise from sustainable low-carbon sources (e.g. solar, wind, tidal energy etc.) in order to have an impact on atmospheric CO_2 concentration. The major challenge therefore, is to fabricate an electrocatalyst that can achieve high conversion efficiency, high product selectivity at low overpotential barrier.

Reaction Mechanism of ECR

The mechanism for electrochemical CO_2 reduction has been studied for many years, with the typical aim of the research being directed towards understanding why different metals give different products. Researchers across the world have proposed and continue to propose novel reaction pathways for ECR based on their understanding of CO_2 reduction on metallic electrodes

Electrochemical reduction of CO₂ is a multistep reaction process generally involving two, four, six, or eight-electron reaction pathways [29], which often take place at the electrodeelectrolyte interface, where the electrode is a solid electrocatalyst while the electrolyte is usually an aqueous solution saturated with CO₂. Typically, this catalytic process involves three major steps:

i. Chemical adsorption of $\ensuremath{\text{CO}}_2$ on an electrocatalyst

ii. Electron transfer and/or proton migration to cleave C–O bonds and/or form C–H bonds

iii. Configuration rearrangement of

products to desorb them from the electrocatalyst surface and diffuse into the electrolyte [30].

The electrocatalyst employed and the electrode potential applied has a great influence

on the final reduction products. In general, the reaction products are a mixture of carbon compounds with different oxidation states, and they often include carbon monoxide (CO), formate (HCOO⁻) or formic acid (HCOOH), methane (CH₄), ethylene (C₂H₄), ethanol (C₂H₅OH), methanol (CH₃OH), etc [31, 32]. Since ECR is a surface phenomenon, there is no generalized reaction pathways towards the products obtained. In fact, the mechanism of the

reaction must depends on the type, nature and morphology of the catalyst, the catalyst's relative selectivity towards a particular intermediate (i.e. the relative ease with which a catalyst adsorbs and desorbs an intermediate), the number of electrons transferred and the energy barrier required for this electron transfer (standard reduction potential) as demonstrated by the sets of equations in the Table 1.

Table 1. List of Several ECR reaction products, the CO₂⁻⁻ intermediate, and the H₂ evolution reaction with their reaction mechanisms and standard reduction potentials (E^o) [33]

		, [55]
Products	Reaction	Eº(V vs. RHE)
СО	$CO_2 + 2e^- + 2H^+ \rightarrow CO + H_2O$	-0.11
НСООН	$CO_2+2e^-+2H^+ \rightarrow HCOOH$	-0.25
нсон	$CO_2+4e^-+4H^+ \rightarrow HCOH+H_2O$	-0.07
CH ₃ OH	$CO_2+4e^-+4H^+ \rightarrow CH_3OH+2H_2O$	0.02
CH4	$CO_2+8e^-+8H^+\rightarrow CH_4+2H_2O$	0.17
С2Н6	$CO_2 + 12e^- + 12H^+ \rightarrow C_2H_4 + 4H_2O$	0.06
CO2•-	$CO_2 + e^- \rightarrow CO_2^{}$	-1.5
H2	$2H^+ + 2e^- \rightarrow H_2$	0.0

As stated earlier, the electrochemical CO_2 reduction reaction (CO₂RR) occurs in three steps. The first step involves oneelectron transfer to CO₂ to form a key intermediate CO₂--, which is the rate limiting step in the reaction, largely due to the structural rearrangement from a linear molecule to a bent radical. This requires an enormous amount of energy usually, an overpotential of -1.9V vs. RHE is needed in order to promote this kinetically sluggish reduction process at a satisfactory rate. After the first step, the obtained CO₂•- which is very reactive undergoes several protoncoupled multiple-electron-transfer reactions, which are thermodynamically more favourable and takes place almost instantaneously.

Some important parameters used in the study of CO₂RR

*CO*² *Reduction Efficiency*

There are two distinct types of efficiencies, Faradaic efficiency (FE) and Energy efficiency.

Faradaic efficiency is quite simple to calculate and understand: it is the percentage of electrons that end up in the desired product. In other words, it is defined as the percentage of electrons consumed for the formation of a given product and can simply be expressed as:

$$E_{faradaic} = \frac{\propto nF}{Q}$$

Where, α is the number of electrons transferred, *n* is the number of moles of the target product, *F* is the Faradaic constant and *Q* is the quantity of charge consumed or passed.

On the other hand, the Energy Efficiency is the amount of energy in the products divided by the amount of electrical energy put into the system which is the overall energy utilization of the system and can be expressed as: $E_{energetic} = \frac{Eeq}{Eeq \times n} \times E_{faradaic}$

Where, E_{eq} is the equilibrium potential and η is the overpotential

Overpotential

This the difference between the applied potential (onset potential) versus the reference electrode under which the desired product is yielded at a detectable amount, and the standard reduction potential (E^o) which is given as $\eta = (E_{applied} - E^o)$.

Current density

Current density for CO_2 reduction is the ratio of the magnitude of current to the geometric surface area of the working electrode. Partial current density for specific products can be obtained by multiplying the corresponding FE by the overall current density.

Experimental studies

As stated earlier, Cu is the only metal catalyst shows catalytic activity towards that electrochemical reduction of CO₂ to variety of hydrocarbons and alcohols. This uniqueability therefore makes Cu and Curelated catalysts to be seen as ideal materials to be used for commercial and/or industrial CO₂ conversion to value-added chemicals in order to solve energy and environmental problems arising from excessive atmospheric accumulation of CO_2 gas. Researchers around the globe have dedicated their time, energy and resources, exploring novel materials and structures as well as the dynamics of this catalytic process on the metal surfaces. Even though this area of research is still growing and the current progress recorded is still far from commercialization, the useful contributions of these researchers and their findings are making headway for the future, and some of these findings shall be discussed in this section taking into consideration, the mechanisms of their electrochemical reduction and the factors that affects the selectivity, improved overpotential and faradaic efficiency of the products obtained.

Cu/Cu-based catalysts for CO₂RR

Loiudice *et al* fabricated Cu Nanocrystals (NCs) used for CO₂RR [34]. Their study reveals a structure/property relationship between the fabricated Cu Nanocrystals and their catalytic activity (Figure 1). The selectivity over hydrogen evolution reaction (HER), and activity of the NCs towards C₂ products predominantly C_2H_4 , depends on the morphology as well as the size of the nanocrystals. Within the same morphology, smaller NCs exhibited higher activity; however, overall, the cube-shaped NCs where more intrinsically active than the spheres. The Cube-shaped NCs (24 nm, 44 nm, and 63 nm sized NCs) shows a nonmonotonic size-dependent selectivity in which the 44 nm cube-shaped NC exhibited the best catalytic performance with 80% efficiency towards selectivity of CO₂RR over HER and FE of 41% for C_2H_4 as shown in Table 2. This recorded selectivity was attributed to the presence of active sites on the surface of the Nanocrvstals (plane, edge and corner). The X-ray Diffraction pattern (XRD) reveals that the (100) plane facets predominate on the surface as shown in the model used in Figure 1. As the size of the Nanocubes increases, the relative number of atoms on the edges and the corners decreases while the number on the planes increases. This therefore results into a surface configuration closer to one single crystal with all the surface atoms lying in the (100) plane. The studies concluded that, since uncoordinated sites in nanocrystals such as corners, steps, kinks, etc. favours HER selectivity, the trends of the Cu nanocubes towards coordinated (100) plane

sites are responsible for the improved CO_2RR selectivity. This active site/size trend suggests that the unique reactivity of the 44 nm Cu NC cubes derives from an optimal balance between plane and edge sites, while the edges are responsible as ethylene-selective active sites in the Cu NC cubes.

Song and co-workers [35] reported the catalytic activity of Cu Nanocrystals on a highly textured N-doped Carbon nanospikes (Cu/CNS)

with selectivity of 84% and the FE of 63% at -1.2V vs RHE for ethanol production (Table 2). Here, Cu/CNS exhibited unsual behaviour because it favours ethanol formation rather than methane and ethylene; this is because ethanol requires C-C coupling between surfaceadsorbed intermediates at some points during the reduction reaction. This high selectivity for C2 product suggests that C-C coupling was preferred to desorption of the C1 intermediate.

Figure 1. On the left axis: Density of adsorption sites in Cu NC cubesreported versus the edge length (d). On the right axis: trend of N_{edge}/N_{100} and N_{100}/N_{edge} versus d, where N_{edge} is the number of atoms atthe edge and N_{100} is the number of atoms on the (100) plane [34]

This preference was suggested to be as a result of the nanostructured nature of the surface which improves the stability of the adsorbed C₁ intermediate keeping it long enough until a second intermediate is available for C₂ coupling. The coupling reported could be between two surfaces bound intermediates or between surface bound intermediate and a nearby C_1 intermediate in solution. production Furthermore, the ethanol dominates the competitive reduction of the coupled C₂ to ethylene or methane. This unique behavior was reported to be as a result of electronwithdrawing effects in the graphene

 π conjugated system, which in turn, polarizes carbonatoms adjacent the to nitrogen positively. This polarization was suggested to provide an active site adjacent to the copper for the C_2 intermediates to adsorb, which may inhibit complete electroreduction. Density Functional Theory (DFT) calculations performed by the group also suggested that the strongly curled morphology of the CNS aids in the adsorption of C₂ intermediates. CNS reported in their study was puckered curled, indicating local corrugation on the surface. Such local deformation and curvature naturally embedded into the CNS could help in strengthening the bond between C_2 and CNS.

Moreover, Song and co-workers [35] also the interaction between studied C_2 intermediates (OCCO) and the Cu surface; they found out that there is a strong covalent bond when the molecule approaches the Cu surface oriented with one end closer to the surface. This covalent bond is comparatively stronger than the OCCO/NCS bond which ensures that desorption of C2 intermediates are prevented, the group therefore proposed that, the C₂intermediates is covalently bound on reactive copper surface for complete reduction to -CH₃, while the oxygen atomon the other end of the C2intermediates is adsorbed on less reactive CNS hence forming -CH₂OH, and protected from competitive reduction, thereby providing a pathway towards selective reduction to ethanol.

Zhiyuan *et al* [36] reported highly selective reduction products on Ag@Cu Bimetallic catalyst. The group fabricated an Ag@Cu coreshell system whose nanoparticles were controlled by tuning the heating reaction time in a simple polyol reduction method (0-20 mins) and the following were obtained Ag@Cu-5, Ag@Cu-7, Ag@Cu-10, Ag@Cu-15, Ag@Cu-20, Ag@Cu-25 respectively (i.e. Ag@Cu-reaction time). The peak activity was recorded at Ag@Cu-7 for CO generation whose FE was 82% and decreases dramatically to 20% for Ag@Cu10, while Ag@Cu-20 gave a peak FE of 28.6% for C_2H_4 (Table 2), as this clearly demonstrates that Ag@Cu-7 (Ag-dominant) and Ag@Cu-20 (Cu-dominant) bimetallic materials achieved better activities for CO₂RR than other counterparts. The authors pointed out that there exist a composition and structure dependent activity and selectivity in the series of the as-prepared Ag@Cu bimetallic catalysts, and that geometric effects rather than electronic effects was the key factor in determining the selectivity. The peak activity at Ag@Cu-7 towards CO as suggested, resulted from functional Ag (modified) with more affinitive Cu via oxygen-metal oxygen interaction which helped to stabilize *COOH intermediate, a key point to lower the energy requirement for CO₂RR and gain higher FE towards CO. Furthermore, the small amount of Cu for Ag@Cu-7 cannot offer the possibility to stabilize of *CO intermediate to protonate successively to hydrocarbons. Conversion to ethylene came as a result of the increase in Cu content at Ag@Cu-10 and above. It was concluded that, synergistic reactions rather than pure dilution effects between Ag and Cu for these AgCu bimetallic electrocatalysts mainly derived from the mixing pattern of the components played an important role in producing the higher CO or hydrocarbons. Ma and co-workers [37] reported

Cu-Pd bimetallic catalysts with different mixing patterns used for the electrochemical reduction of CO₂. Their study examines a range of bimetallic Cu-Pd catalysts with ordered, disordered, and phase-separated atomic arrangements (Cu_{at}:Pd_{at}=1:1), as well as two additional disordered arrangements (Cu₃Pd and CuPd₃ withCu_{at}:Pd_{at} =3:1 and 1:3). The result reveals high selectivity for C1 products(mainly CH₄) in the ordered structure while the phaseseparated and the Cu₃Pd exhibited high selectivity for C₂ products (Table 2) where the following cases were observed; CO is an important precursor for C_2 chemicals production and the phase-separated CuPd catalyst converts adsorbed CO to C2 chemicals more easily than the ordered CuPd catalyst, with latter converting adsorbed CO more easily to CH₄ than the phase-separated catalyst. The high selectivity of the phase-separated CuPd structure for C₂ products was as a result of dimerization of adjacently adsorbed CO to COCOH intermediates due to interacting neighbouring features of Cu atoms with

favourable molecular distances between them and small steric hindrance (Fig. 2). Similarly, the preference for CH_4 on the ordered-CuPd (Fig. 2) structure was due to presence of Cu-Pd intermetallic structures which adsorbed CO on a Cu and further converted it to CHO intermediate whose oxygen atom is partially adsorbed to Pd atom which stabilizes the adsorption of CHO intermediate and favours the production of CH₄. The study also reveals that, as the concentration of Cu increases from Pd, CuPd₃, CuPd, to Cu₃Pd and Cu, the FEs for C₂ products also increased which further supported the idea that the dimerization of adsorbed CO to form C₂ chemicals may be preferred on the sites with neighboring Cu atoms. The group implies that the selectivity of different therefore concluded that the selectivity of products can be tuned by altering the the Cu-Pd bimetallic catalyst can be geometric arrangements of the catalyst.

Figure 2. Schematic illustration of prepared CuPd Nanoalloys with different structures [37]

Lum et al [38] reported that trace levels of in carbon significant copper shown electrochemical CO₂ reduction activity. The study investigated the catalytic activities of pure graphite (PG), graphene oxide (GO), and carbon nanotubes (CNT) dispersed on glassy carbon (GC) for the electrochemical CO_2 reduction reaction in aqueous solution (Table 2). It was observed that carbon support materials exhibited significant electrocatalytic behaviours attributable to the presence of impurities in them. However, the presence of Cu as impurity in GO configuration revealed a significant yield of methane. Interestingly, it was revealed that the catalytic activity of the GO-supported material dropped significantly when nearly all the impurities were washed away in ultrapure nitric acid. On reintroduction of Cu, the catalytic behavior surfaced which increases with increase in the amount of Cu deposited. On comparison between Cu electrodeposited on GO/GC, PG/GC and GC systems, it was revealed that the activity per mass of Cu is ~ 4-5 times higher for GO/GC or PG/GC than GC, attributable to preferential deposition of Cu-NPs at defects present on the graphene layers of GO and PG with latter having the highest activity for methane production (Table 2). The group therefore suggested that, a highly active catalyst for methane formation via the CO_2RR can be created for the future by the introduction of defects into graphene layers, onto which Cu can then be electrodeposited.

Hahn and co-workers [39] studied the surface structure of Cu thin films catalysts in order to probe the relationship between active catalytic activity sites and for the electroreduction of CO₂ to fuels and some value added chemicals. In their study, they reported a vapor deposition of Cu thin films on largeformat single-crystal substrates (Al₂O₃(0001), Si(100), and Si(111)), and confirm epitaxial growth in the (100), (111), and (751) orientations respectively (Fig. 3). Results of electrochemical CO₂ reduction reveals that the three orientations all make > 2e- reduction products in the tested potential range between -0.89 and -1.10 vs. RHE. However, Cu(100) and Cu(751) are both active and selective for C-C coupling reaction than Cu(111) and Cu(751) is the most selective for the $> 2e^{-}$ oxygenate formation at low overpotential. The group

pointed out that the difference in selectivity could be due to due to a lower kinetic barrier for CO dimerizationon Cu(100) compared with Cu(111). This therefore suggest that there is a

strong correlation between C–C coupling selectivity and the coordination number of the surface, which was favoured by the less coordinated Cu(100) and Cu(751) than the more coordinated Cu(111) (Fig. 3).

On the other hand, analysis of oxygenate vs. hydrocarbon selectivity was conducted on the three orientations and they came to a conclusion that at -0.89 V vs. RHE, Cu(751) has the highest oxygenate/hydrocarbon ratio, and the group put forward a suggestion that this improvement in oxygenate selectivity is related to the fewer number of nearest neighbors on the Cu(S)– $[n(110) \times (100)]$ (*in-situ* surface structure of Cu (751) where 'n' varies from 2 to 7) surface, or the top most layer of the Cu (751) film, because barriers for hydride transfer are predicted to be lower than those for protoncoupled electron transfer at lower overpotentials.

Figure 3. Color-coded atomic models showing coordination numbers for the (A) Cu(111), (B) (100), and (C) (751) surfaces [39].

Zhang *et al.* [40] investigated CO_2 electroreduction on Cu overlayers on tetrahexahedral Pd nanocrystals (THH Pd NCs) with (310) high-index facets. The study revealed catalytic activity/selectivity towards alcohols (ethanol and methanol). Cu_{1ML}/THH Pd NCs exhibited high activity and selectivity for CO_2 electroreduction to ethanol with ~20% FE at -0.46 V vs. RHE. The selectivity of the alcohol was readily tuned by varying the coverage of Cu on THH Pd NCs in which methanol was obtained at Cu_{0.8ML}/THH Pd NCs with FE of 19.5% (Table 2). According to the group, the results demonstrated that the electroreduction of CO₂ is a surfacestructure-sensitive reaction and the (310) high-index facets facilitate the formation of ethanol.

Mixed iron-copper (Fe-Cu) oxide catalyst was reported by Yang et al. [41] for the electrochemical reduction of CO₂ to acetate with FE of 80% and 76% using Arpurged, phosphatebuffer and NaHCO₃ electrolytes respectively (Table 2). The catalyst reported here is a mixed phase material consisting CuFeO₂ and CuO. The study reveals that competing production of formate over the mixed structure existed which was favoured by the increase in concentration of Cu relative to Fe. Here, the selectivity of the catalyst towards either acetate which is the primary product or formate is a function of the iron-copper atomic ratio represented as Fe:Cu. At a ratio of 1:3, the catalyst favours the production of acetate but as the concentration of Cu increases relative to Fe from 1:3 through 0:5, and 0:1, the products obtained was

predominantly formate. This result therefore suggested that varying the Fe:Cu atomic fractions, the selectivity of the catalyst can be tuned from primarily acetate to primarily formate. Furthermore, the morphology of the as-prepared catalysts is also a function of their composition which was reported that the grain size decreases slightly as a function of increasing Fe:Cu ratio.

Copper nanofoams with hierarchical porosity was investigated for the electrochemical reduction of CO_2 [42]. This study reveals an improved product distribution and faradaic efficiency which far exceed the one obtained from smooth electropolished Cuelectrodes (Table 2). This result was attributed to high surface roughness, hierarchical porosity, and confinement of reactive species.

Oxide-derived Cu_xZn catalysts was reported by Ren *et al.* [43], used for the electrochemical reduction of CO₂. Where $Cu_xZn = Cu_{10}Zn$, Cu_4Zn , and Cu2Zn. Cu and its oxides are used to demonstrate that the selectivity of CO₂ reduction to ethanol could be improved by introducing a cocatalyst to generate an in-situ source of mobile CO reactant, achievable by doping the Cu-based oxides with varying amounts of Zn dopants. This observation was also accountable for tuning the selectivity for the production of ethanol over ethylene by a factor of ~12.5. Peak production of ethanol was recorded on Cu₄Zn at -1.05V vs RHE, with a faradaice fficiency of 29.1% and a partial current density of -8.2 mA/cm^2 (Table 2).

Figure 4. SEM images of electrodeposited copper foams on a copper substrate for (a) 5s; (b) 10s; (c) 15s; (d) 30s; and (e) 60s; (f) nanostructure of the electrodeposited foam [43].

The formation of ethanol and ethylene on Cu_xZn surfaces could be as a result of synergistic interaction between Cu and Zn which promotes the formation of ethanol. The group therefore postulated that, gaseous CO formed from the Zn sites may have further reacted to give ethanol. This postulation was strengthened by the observation that the potential where the FE of ethanol had peaked shifted to a more negative value on Cu₄Zn, and Cu₂Zn in comparison to Cu catalyst. This is because the CO needed for enhanced ethanol formation could only be generated in greater quantities on the Zn sites at more cathodic potentials. They also proposed in the mechanism of reaction that, for ethanol to be produced on a roughened surface (Fig. 4) such as Cu_xZn , CO is needed for insertion into the bond between into the bond between Cu and $*CH_2$ to form $*COCH_2$, whose further reduction yields acetaldehyde and finally ethanol.

Similarly, selective electrochemical CO_2 reduction to ethylene and ethanol on copper (I) oxide catalysts was investigated by Ren and coworkers [44]. They reported that the Faradaic yield for both ethylene and ethanol can be systematically tuned by changing the thickness of the deposited overlayers. Peak selectivity was observed for the film thickness of 1.7–3.6 µm at –0.99 V vs RHE, with faradic efficiencies (FE) of 34–39% for ethylene and 9–16% for ethanol (Table 2). This selectivity was optimized according to material analysis, with the 1.7-3.6-µm-thick films, which consisted of $0.5-1-\mu$ m-sized Cu polyhedron particles. They also proposed that during the the CO₂ reduction, stepped surfaces with edges and terraces are likely to be formed as copper (I) oxide reduce to metallic Cu. Therefore, the optimum combination of these features must be necessary to dissociate CO₂ and to optimize the chemisorption energies of the CH_xO intermediate. Edeges with undercoordinated Cu atoms plays a vital role in promoting the buildup of a large coverage of CH_xO reactive intermediates, to facilitate their dimerization. The study was concluded that variation of the local pH at the surface of the catalyst was also a factor that boosted the calalysts' selectivity; however, higher selectivity was attributed to step and edge morphological features of the catalysts.

Recently, Reller and co-workers [45] reported nano dendritic Cu catalysts which were selective for the electrochemical reduction of CO_2 towards ethylene at high current density. The result reveals a 57% FE for ethylene and a current density of 170 mAcm⁻² (Table 2). The dendritic structure consists of mainly Cu and Cu₂O. The in-situ deposition of Cu in acidic pH environment forms the catalytic layers which enables the selective formation of ethylene. It was also revealed that, the catalytic performance of the material does not depend on the supportted material [45]. Furthermore, structural changes of the active sites were observed during the electrolysis such as sintering and/or dissolution/re-deposition and oxidation of the Cu, results to structural degradation and coarsening of the initially formed active species. This leads to the lost of the much required high index facets with low coordinated sites responsible for the formation of ethylene, thereby, creating new catalytic centers having lower hydrogen overpotential which favours the formation of hydrogen.

Recently, Cu/SnO₂ core/shell structure was reported by Li et al [46], used for the electrochemical reduction of CO₂ to CO. During the reduction, thin layer of SnO₂ was coated on Cu-nanoparticles. It was observed that, the reduction was Snthickness dependent. About 1.8 nm thick shell shown Sn-like activity to generate formate while the thinner 0.8 nm shell is selective to the formation of CO with the conversion Faradaic efficiency reaching 93% at -0.7V vs. RHE (Table 2). Their study proposed that the formation of CO by the 0.8 nm thick SnO₂ shell could be as a result of alloying with trace of Cu which causes a morphological change such that, the SnO_2 lattice become uniaxially compressed and also, the tinted contamination of SnO₂ with Cu, favours the formation of CO over formate. Therefore, synergistic effects between Cu and SnO₂ in the core/shell Cu/SnO₂ structure as explained above, accounts for the preference and could be used to tune the selectivity of electrochemical CO₂ reduction towards CO products.

The yield behavior of an electrodeposited cuprous oxide thin film was examined by Le *et al* [47]. The study explored the relationship between surface chemistry and reaction behavior of the aforementioned material system, relative to air-oxidized and anodized Cu electrodes.

Higher yield and faradaic efficiency (38%) for CH_3OH was observed at Cu (I) active sites as compared to air-oxidized and anodized Cu electrodes (Table 2). This suggested that, Cu (I) active sites might have played a vital role in the catalyst's selectivity to CH_3OH . The results also, revealed that at the required potentials for CO_2 reduction, copper oxides are reduced to metallic Cu and the products yields are dynamic. Furthermore, it was revealed that the Cu (I) active specie might be responsible for improving the stability of the intermediates, and enhance the selectivity towards CH_3OH by enabling hydrogenation of oxygen atoms from H_3CO adsorbates.

Ke and co-workers reported a CuOderived porous copper nano-ribbons array [48], used to electrochemically convert CO₂ to C₂ products. At applied potential of -0.701V vs RHE, the C-C coupling reaction is favoured whose total faradaic efficiency towards the formation of $C_2H_4\text{, }C_2H_6$ and C_2H_5OH reached up to ${\sim}40\%$ (Table 2), while suppressing the formation of C_1 products. The authors therefore established the preference for C₂ products over C₁ products can be attributed the presence of surface defects and large number of grain boundaries on the CuO-derived copper nanoporous ribbon arrays. The roughened porous channels of these electrodes allowed for facile diffusion of electrolyte and provided large number of active step sites for CO₂ reduction.

Similarly, electrochemical CO₂ reduction on Cu₂O-derived copper nanoparticles was studied by Kas et al [49], by controlling its activity towards hydrocarbon production. In this report, selectivity of the CO₂ electroreduction was found to depend largely on Cu₂O film thickness, rather than on the initial crystal orientation. This was due to the fact that the Cu₂O reduction itself seems to be highly favoured relative to the CO₂ reduction or water splitting. Therefore, the catalytic behavior was predominantly due to the layer thickness associated with local pH changes, thus impacting the hydrocarbon selectivities. The group therefore suggests that optimum number density of nanoparticles with the combination of the right electrolyte (pH) can open up routes for highly selective ethylene formation via electrochemical CO₂.

nanocomposite catalysts (Cu-rGO) [50]. The study reveals a catalyst which could effectively reduce CO_2 to CO, HCOOH and CH_4 with a faradaic efficiency of 76.6% at 0.4V vs RHE and excellent stability (Table 2). Uniformly distributed small Cu nanoparticles on the rGO and the synergistic coupling effect of the formed nanocomposite were responsible for the superior electrocatalytic activity and stability of the Cu-rGO nanocomposite achieved. The electron transfer between the rGO and Cu nanoparticles might have increased localized electron concentrations, resulting in significant enhancement of the catalytic activities of the for the electrochemical nanocomposite reduction of CO₂.

In a research work conducted by Hoang et al [51], nano porous copper films were fabricated by additive-controlled electrodeposition (i.e. 3,5-diamino-1,2,4triazole (DAT) as an inhibitor), used in CO₂ reduction catalysis. By varying different synthesis parameters such as pH and deposition current density, the morphologies of the thin films are tuned into dots, wire and amorphous structures. The wired structure exhibited the best catalytic activity with high faradaic efficiency for C₂H₄ product as reported in Table 2. The Cu films were reported to produce active sites i.e. small and stable pores which allow for gas permeability thereby, making the resulting structures tunable depending on the deposition conditions. On the same vein, the preference of the Cu-DAT wire structure for C₂ over C₁ products was reported to be as a result of the presence of steps and edges with low coordinated Cu atoms which promotes the adsorption of C1 products and its subsequent dimerization to C₂ products.

The underlying causes for the selectivity of CO_2 electroreduction toward ethylene on Cu_2O derived Cu catalysts were studied by Handoko *et al* [52]. They reported that there exist, an inverse relationship between the crystallite sizes of the Cu₂O-derived Cu particles and the selectivity of the CO₂ reduction towards C₂H₄. Interestingly, decrease in the particle's crystallite size from 41 to 18 nm, results in an increased Faradaic efficiency (FE) of C₂H₄ formation increased from 10 to 43%. It was also revealed that samples with smaller particle crystallite sizes were found to possess more diverse adsorption sites for CO intermediate, which is important for C–C coupling of C₁ adsorbates. The group therefore asserted that, this result could offer a better platform to fully explore Cu₂O-derived Cu as ideal catalysts for producing chemical feed-stocks and fuels from CO₂ reduction.

Plasma activated Cu nanocube catalysts with tunable Cu (100) facet morphology, defect and oxygen contents was recently studied by Gao and a group of co-workers [53]. Their findings reveals a high catalytic activity and selectivity for ethylene and ethanol (Table 2). This high catalytic performance was ascribed to the presence of defects, surface and sub-surface including species, oxygen oxygen ions associated with Cu⁺ species, achievable by tuning the catalysts' morphology and defect density, ion content, and surface roughness via plasma induced pre-treatment. This group therefore concluded that, the presence of oxygen species in surface and sub-surface regions of the nanocube catalysts is key for achieving high activity and hydrocarbon/alcohol selectivity, even more important than the presence of Cu(100) facets.

Oxide-derived mesoporous foam catalyst fabricated via template-assisted electrodeposition process by Dutta *et al* [54], was reported to selectively reduce CO_2 to C_2H_4 and C_2H_6 with a combined faradaic efficiency of 55% for the C_2 product as shown on Table 2. This high selectivity was attributed to due to the availability of the surface sites (i.e. surface pore diameter) for C-C coupling reaction and the temporal trapping of gaseous CO and C_2H_4 intermediates inside the mesoporous catalyst material during CO_2 electroreduction. As reported, the key point to the creation of a high abundance of surface active sites for C-C coupling for the catalyst activation was the in operando reduction of a Cu_2O phase.

In another work reported by Chung et al [55], a series of hierarchical Cu electrodes were used to catalytically convert CO₂ to formic acid and a negligible amount of CO. The peak activity was recorded for the member of the series Cu-h 5 electrode, in which it demonstrated an FE of 28% as shown in Table 2. This peak activity was due to increased (111) facet in the electrocatalyst which energetically favoured HCOOH production. This is because the majority of the surface lattice, the (111) facet, leads to the formation of Fintermediate, and as a result, CO₂ is mostly reduced to HCOOH. Another wellknown intermediate is C-intermediate, which bind to the(100) facet, is presumably reduced to HCOOH. This is because enhanced electron transfer amplified by surface modification assisted the reduction to end up with HCOOH and hinders COformation.

The electrochemical reduction of CO₂ to C₂H₄ and subsequent hydrogenation to C₂H₆ was observed for a Cu₂O-derived Cu/PdCl₂ catalyst by Chen *et al* [56], a significant FE for ethane was observed (Table 2). Detailed mechanistic studies revealed that, CO₂ was first reduced to C_2H_4 at the Cu sites and then underwent hydrogenation with the help of the adsorbed $PdCl_x$ to generate C_2H_6 . Interestingly, both sites were responsible for the reduction to C₂H₄ and subsequently to C₂H₆, but it was inferred from the study that, PdCl₂ dopants alongside a working electrode could offer а new methodology to expand on the type of products that could be obtained from a CO_2 building blocks.

The product yield and the relationships between surface chemistry and reaction behavior for surface oxidized copper electrodes were investigated by Keerthiga *et al* [57]. Even though there was no clear explanation for the enhanced production of ethane as the major product during electrochemical reduction of CO_2 at the surface of the electrodes, it was hypothesized that Cu (I) species played a vital role in the selectivity of the catalyst, further investigation was recommended by the group in order to understand the mechanistic details of the reaction.

However, Cu nanoclusters on single crystal (1010) ZnO electrodes were studied by Andrews and co-workers [58]. By comparing the catalytic activity/selectivity of Cu electrodes and Cu nanocluster-ZnO electrodes at a potential of -1.4V vs Ag/AgCl, it was observed that there was improved selectivity for methanol and ethanol recorded for Cu/ZnO electrode. FTIR analysis on the products obtained revealed a characteristic absorption behavior for formats and methoxy adsorbates. The mechanism for the formation of ethanol was not clear, however, the methoxy adsorbates were closely associated to alcohol since other products were obtained experimentally. Several possible mechanisms that could lead to enhanced alcohol selectivity were proposed, including reactions at Cu-Zn interfaces or charge effects arising from ZnO substrates. The ZnO may strengthen the Cu-C bond via σ -donor interactions and π back-bonding which allows for improving hydrogenation of the carbon atom, increased methoxy generation and selectivity to alcohols. However, the Cu-ZnO

electrodes demonstrated a stable surface for continuous CO_2 reduction and significantly increases in alcohol yields, independent of the aforementioned pathway.

Lv *et al* [59] reported a Tin-based film on copper plate, used for the electrocatalytic reduction of carbondioxide to formate. This shows a catalytic performance with a faradaic efficiencyy of 74.1% (Table 2). This catalytic activity was influenced and enhanced by exposing the Sn/Cu electrode to air. The asprepared Sn/Cu electrode exposed for 24 hours showed a better catalytic performance for CO_2 reduction which was explained to be as result of the Sn film surface that became gradually oxidized and form an oxide layer which can inhibit the competing HER.

Tang et al [60] reported a structurally precised copper-hydride nanoclusters $(Cu_{32}H_{20}L_{12}$ where L is a dithiophosphate ligand). The major product obtained by the electrochemical synthesis on the nanocluster was HCOO- with over 80% selectivity, with other minor products such as CO and H₂ at low potentials. DFT investigation also explained that both the Cu and the hydride ligand surfaces (Fig. 5) played a vital role in pushing the reduction towards CO2 reduction over HER at low potentials which leads to the formation of HCOOH. The HCOOH formation follows a two steps lattice-hydride reduction; CO₂ reacts directly with the capping hydride tovform HCOO* which then reacts with another interstitial hydride to form HCOOH, and then the hydride vacancies are readily regenerated by the electrochemical proton reduction.

Figure 5. Atomic structure of Cu32H20L12 nanocluster (L=S2PH2). Color code: orange, Cu; green, hydride; yellow, S; purple, P; white, H on the dithiophosphate ligands. Different types of hydrides are indicated by the arrows [60].

In addition, Kim *et al* [61], have shown that by ordering the atomic transformation of AuCu nanoparticles, one could activate them as selective electrocatalyst for CO₂ reduction. Unlike the disordered alloy nanoparticles which showed preference for HER, the ordered AuCu nanoparticles selectively reduced CO₂ to CO at an FE of 80%. A structural investigation thus revealed that this enhanced catalytic activity for the ordered AuCu nanoparticles was due to the formation of a compressively strained threeatoms-thick gold overlayer that form over the inter-metallic core following the ordering transformation. This therefore suggests that surface enrichment of gold at the atomic level may be the origin of the enhanced catalytic behavior.

Concluding remarks

In this review, we have discussed the mechanistic behavior of CO₂ electrochemical reduction on various copper/copper based catalytic materials. More works should focus on utilization of porous materials and the study of the CO_2 adsorption and activation on the heterogeneous catalysts surfaces, these are very crucial for the successive reduction steps and the suppression of the competing HER. Structural and morphological controlled of eletrocatalysts should be studied extensively theoretically and experimentally. Details of how certain morphological features, and other factors that determines the selectivity of the reaction to target products were also discussed and summarized in Table 2) with the hope that this would spark up an improved interest to explore copper and copper-based materials in order to solve the world's energy and environmental challenges. However,

understanding the mechanistic aspect of CO_2 adsorption modes and effects of some operational parameter such as pH, surface functional groups, cocatalysts, and external bias needed detail attention. The mechanism of CO_2 reduction needs requires more deep investigation in the future studies. The findings of the reaction barriers and ratedetermining steps in CO_2 elctroreduction is important for the further improvement of the conversion efficiency.

Acknowledgements

Authors acknowledge the support obtained from NRF-TWAS for Doctoral Fellowship programme awarded to one of the authors (UID:105453 & Reference: SFH160618172220)

Disclosure Statement

No potential conflict of interest was reported by the authors.

P. I. Amosa e	t al.270
---------------	----------

	Table 2. Stat	e-oi-the-art prog	ress of Cu/C	u-based elec	trodes							
S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
1	Copper(Cu) Nanocrystals	Cu NC spheres (7.5 nm and 27 nm), Cu NC cubes (24nm, 44nm and 63 nm). Within the same morphology, smaller NCs exhibited higher activity; however, overall, the cube-shaped NCs where more intrinsically active than the spheres	CO ₂ - saturated 0.1M KHCO3 was used as the electrolyte in aqueous medium; pH of the solution not specified	Not specified	Not specifie d	C ₂ H ₄ and CH4	The selectivity of Cu NCs cubes towards CO ₂ RR selectivity are; 24 nm = 43% 44 nm = 80% 63 nm = 63%. FE for C ₂ H ₄ was 41%	Platinu m foil was used as the counter electrod e and Ag/AgC l electrod e	Cu NC Cubes /spheres spincoated on glassy carbon	For the synthesis of Cunanocubes (24, 44 and 63 nm); Varying concentration of CuBr and TOPO were dissolved into oleylamine in a threenecked flask by vigorous magnetic stirring at 80°C for 15mins. The resulting solution was heated upto 210-260°C and refluxed at this temperature for about 1-2.5h. For the synthesis of Cu spheres, 35 ml oleyamine and 3 mmol of CuBr were mixed in a three- necked flask by strong magnetic stirring at 80 °C for 15 mins, 6 mmol TOPO was injected into the mixture. After an additional stirring at 80 °C for 5 mins the mixed solution was heated upto 260 °C quickly and kept at this temperature for 3h before cooling to	Reaction was performe d at room temperat ure	[34]

room temperature.

Table 2. State-of-the-art progress of Cu/Cu-based electrodes

271

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
2	Copper Nanoparticle/ NDoped Graphene (Cu/CNS)	39.18nm. The CNS have a strongly curled morphology	CO2- saturated 0.1M KHCO3 electrolyte in aqueous medium. pH not specified	-1.2V vs RHE	Not specifie d but the maximu m current density achieve d at -1.0 vs RHE	C2H5OH, CH4 and CO	C ₂ H ₅ OH = 63%, CH ₄ = 6.8% CO = 5.2%	Glassy Carbon electrod e Pt	Cu/CNS	The Cubes were precipitated out by centrifugation. Not specified in the article	Reactions operated at room temperat ure and in water	[35]
3	Ag@Cu Bimetallic Nanoparticles	Core-shell structured Bimatallic Nanoparticles prepared at different reaction time; Ag@Cu-5, Ag@Cu-7, Ag@Cu-7, Ag@Cu-10, Ag@Cu-15, Ag@Cu-20 and Ag@Cu-25	Ar and CO2saturate d 0.1M KHCO3 solution in aqueous medium. pH of the solution = 6.8	-1.06V vs RHE	Not specifie d	CO and C2H4	Ag@Cu-7 gave the highest FE for CO=82% and decreased dramaticall y to 20% for Ag@Cu- 20 gave a peak FE for C ₂ H ₄ =28.6 %	gauge and Saturat ed Calomel electrod es (SCE) served as counter and referen ce electrod es respecti vely	L-type glassy carbon electrode with a diameter of 5mm on which 20µL inkformulati on of the electrocataly s t was dropped	The catalyst was synthesized by means of one-step polyol method to fabricate the epitaxial growth of noble metal to core- shell structure by adjusting the temperature control method and reaction time	Reactions was carried out at room temperat ure	[36]
4	Bimetallic Cu- Pd catalyst with different mixing pattern	Bimetallic Cu-Pd catalyst with ordered, disordered and	1M KOH electrolyte whose physical	Over potentials not specified.	The Phase separat ed	CO, CH4, C2H4, and C2H5OH	Ordered CuPd=(>80 %	Not specifie d	Each of the Bimetallic Cu-Pd catalyst was	The reader are advised to read Ma et al 2017 [37]	The reaction	[37]

P. I. Amosa	et al.	272
-------------	--------	-----

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
		phaseseparated atomic arrangement with different atomic ratios (1:3 to 3:1).	state was not specified was used. pH was not specified.	At Cathode Potentials more positive than -0.3 vs RHE favours CO while potentials more negative than 0.3 vs RHE favours C2 products	sample achieve s highest total current density of 370mA cm -3		FE for C1 products); Phasesepar ated CuPd and Cu ₃ Pd=(>6 0% FE for C2 Products)		deposited onto a gas diffusion layer to form a gas diffusion Electrode (GDE)		was performe d in potentios tatic mode under Ambient condition S	
5	Trace level of Cu impurities in Carbon support materials	Cu Nanoparticles electrochemicall y deposited on Pure Graphite (PG), Graphene Oxide (GO), and Carbon Nanotubes (CNT) all supported by Glassy Carbon (GC) and GC itself.	0.1M NaHCO ₃ solution saturated with CO ₂ for 1h pH was 6.8. To prepare Cu Spiked electrolytes, appropriate amount of Cu(ii) sulfate hydrate was added to make 0.1MNaHCO 3 solutions	Overpotent ia l was not specified but the reaction was carried out at an applied potential of 1.3V vs RHE for 2h	For Cu(2)G O/GC, the Current Density is ~4.6 mAcm ⁻³	H2, CO, CH4, and HCOOH	For both Cu(1)GO/G C and Cu(1)PG/G C, the FE for methane is about ~40%. The highest selectivity for methane is observed on	Platinu m foil was used as the counter electrod e while Ag/AgC l electrod e was used as referen ce electrod	Cu Nanoparticle s drop-cast and spin- coated onto a glassy carbon	Cu Nanoparticles were synthesized by the thermal decomposition of Cu acetylacetonate (Cu(acac) ₂) in oleylamine	Ambient pressure CO ₂ electrolys is was carried out in a customar y made gas-tight electroch emic al cell made of polycarbo nate and fitted with Buna-NO- rings	[38]
6	Cu Thin Films	Vapour Deposition of Cu Thin-film on	CO ₂ purged 0.1M KHCO ₃	CO ₂ reduction was	Not specifie d	CH4 , C2H4 and various	Not specified	Pt counter electrod	Cu thin-films on large	Thin-films of Cu were synthesized on largeformat (27mm	The experime nt was	[39]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
		large single crystal substrates resulting in epitaxial growth in the (100), (111) and (751) out-ofplane orientations on Al ₂ O ₃ (0001), Si(100) and Si(111) substrates respectively. i.e. Cu(100), Cu(111) and Cu(751)	electrolyte whose physical state and pH were not specified	carried out within the applied potential range of 0.89V and - 1-10V vs RHE		oxygenat e s such as carbonyls and alcohols		e and a miniatu re leakless Ag/AgC l (3.4 M KCl) referen ce electrod e	format Al ₂ O ₃ (0001), Si(100) and Si(111)	x 42mm) Al ₂ O ₃ (0001), Si(100) and Si(111) substrates in a three-source Physical Vapour Deposition (PVD).	performe d using Chronoa mpero metry at a single potential for 1h	
7	Cu Overlayers on Tetrahexahedr al Pd Nanocrystals (Cu/THH Pd NCs)	Cu Overlayers on tetrahexahedral Pd nanocrystals with (310) high- index facets	CO2 saturated 0.1M NaHCO3 (pH = 6.8). physical state of the electrolyte was not specified	-0.46 V vs RHE	Not specifie d	CH3OH and C2H5OH	Cu _{1ML} /THH Pd NCs exhibits selectivity to C ₂ H ₅ OH at FE=~20% while Cu _{1ML} /(111)faceted Pd NCs=6.1%. CH ₃ OH was obatained on Cu0.8ML/T HH Pd NCs with FE of 19.5%.	Pt foil, and the referen ce electrod e was a saturat ed calomel electrod e (SCE)	Cu _{1ML} /THH Pd NCs; Cu _{1ML} /(111)f aceted Pd NCs and Cu0.8ML/TH H Pd NCs. The support material not mentioned	The THH Pd NCs were prepared by a programmed square wave potential (SWP) method on a glassy carbon electrode in 0.2 mM PdCl ₂ + 0.1 M HClO ₄ solution. The (111)-faceted Pd NCs were prepared by constant potential electrodeposition at 0.20 V for 500 s. Cu overlayers were prepared by underpotential deposition (UPD) of	The reaction was carried out under ambient condition s	[40]

Cu

P. I. Amosa e	et al.274
---------------	-----------

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
8	Fe-Cu Oxide Catalyst	The selective catalyst is a mixed phase material consisting of CuFeO ₂ and CuO. Fe:Cu atomic ratio was varied from 1.3 to 0.1	0.1M CO ₂ saturated H ₃ PO ₄ buffered at pH = 7 and 0.1M NaHCO ₃	The applied potential was –0.4 V bias vs. Ag/AgCl	Not specifie d	Acetate and formate	Acetate= 80% (H ₃ PO ₄) and 76% for (NaHCO ₃)	Pt counter electrod e and Ag/AgC l as referen ce electrod e	Fe–Cu mixed oxide, Fe2O3 CuO	on the Pd NCs in 1 mM CuSO ₄ + 0.5 M H ₂ SO ₄ . The catalyst was prepared by electrodeposition on FTO glass substrate using dimethyl sulfoxide (DMSO) plating solution containing 1 mM Cu(NO ₃) ₂ , 3 mM Fe(ClO ₄) ₃ and 0.1 M KClO4 electrolyte. The as-deposited catalysts was annealed at 650 °C for 3.5 hours in the air. Three-dimensional	The reaction was carried out at -0.4 V bias vs. Ag/AgCl under constant white light illuminati on.	[41]
9	Cu Nanofoams	Cu Nanofoams with hierarchical porosity	0.1M KHCO3, pH 6.8	The onset potential was -1.0V vs Ag/AgCl	>0.5 A/cm ²	HCOOH, H ₂ , and CO; C ₂ H ₄ , C ₂ H ₆ , CH ₄ , and C ₃ H ₆ .	FE for HCOOH was 37% at -1.5V	Copper sulfate.	Al-substrate coated with copper foam	electrodeposited onto mechanically polished copper substrates. This procedure is simple to perform and results in an electrode with hierarchical	The reaction was performe d under ambient pressure	[42]
1 0	Oxide-Derived Cu _x Zn Catalysts	Oxide-derived Cu-based catalysts with different quantities of Zn dopants	An aqueous 0.1 M KHCO3 electrolyte. pH is not specified.	The applied potential was between –0.65 and	-8.2 mA/cm 2	C2H5OH and C2H4	FE for ethanol production was 29.1% at -1.05 V vs	Ag/AgC l electrod e (saturat ed KCl,	OxideDerived Cu _x Zn	porosity. The oxide films Cu, Cu _x Zn, Cu _x Ag, and Cu _x Ni were galvanostatically deposited onto polished Cu disks.	The reaction was performe d under ambient	[43]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
		(Cu ₁₀ Zn, Cu ₄ Zn, and Cu ₂ Zn). The asdeposited Cu oxides were in the form of smooth polyhedron particles of sizes 100 nm to 1 μ m, while the Zn oxide films were interconnected platelets with lengths of hundreds of nanometers. The Cu _x Zn oxide catalysts showed spherical particles that were hundreds of nanometers in sizes.		-1.15 V vs RHE			RHE,	Pine) and Pt wire were used respecti vely as the referen ce and counter electrod es.		Zinc oxide films were prepared similarly, except that they were deposited onto Zn disks. The electrodepositions were performed using a potentiostat with applied currents of -0.92 mA/cm ² for 600 s. The electrolytes were kept at 60 °C and stirred at 300 rpm during the deposition process.	pressure in aqueous 0.1 M KHCO ₃ electrolyt e, using 60mins chronoa mpero metry at potentials between -0.65 and -1.15 V. The cathodic and anodic compart ments of the cell were separated by an anion	

infused with a continuo us flow of CO_2 at 20 cm³/min.

exchange membran e. Both compart ments were

<i>P. I.</i>	Amosa	et a	ıl.276

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
1 1	Copper(I) Oxide Catalysts	Oxide films of Cu of varying thickness	An aqueous 0.1 M KHCO3 and 0.1 M K ₂ HPO4 buffer was used as electrolyte was used. The latter was purified by pre- electrolysis under N ₂ gas for 20h.	An overpotent ia l of -0.99 V vs RHE was recorded. Applied potential was between -0.59 and -1.19 V vs RHE.	Not specifie d	C2H5OH and C2H4	34–39% for C ₂ H ₄ , and 9–16% for C ₂ H ₅ OH.	A coiled platinu m wire and Ag/AgC l (Saturat ed KCl, Pine) served as counter and referen ce electrod es, respecti vely	Copper(I) Oxide	Flat Cu discs, served as substrates for all the catalysts. They were first polished to a mirror- like finish using SiC paper and diamond slurries. Cu ₂ O layers were then galvanostatically deposited onto these Cu discs from a copper lactate solution. Cu ₂ O films of different thicknesses were obtained by varying the deposition time between 1 and 60 min. Seven Cu ₂ O films with varying thicknesses were prepared. Electropolished Cu surfaces were prepared by electropolishing the copper discs at +260 mA/cm2 for 60 s in 85% phosphoric acid, followed by rinsing with ultrapure water.	A custom- built, gastight Teflon electroch emic al cell. The cathodic and anodic compart ments, separated by an anionexc hange membran e, were filled with 10 and 8 cm ³ of electrolyt e separatel y. The volume of the headspac e in the cathodic compart ment was 2 cm ³ .	[44]
1 2	Nanodendritic Cu catalyst	In situ deposited copper nanodendrites	0.1 M KBr was used as catholyte	The optimized working	170 mA cm ⁻² .	C_2H_4	57%	A solid IrOx coated	Cu nanodendrite s	Cu nanodendrites were obtained during an in situ	The CO ₂ reduction was	[45]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
			(100 mL) and 1 M KHCO ₃ as anolyte (100 mL). p ^H was not specified.	potential of the cathode was located in a voltage range experiment s between (-1.5 and -1.55 V) versus Ag/AgCl.				Ti electrod e was used as counter electrod e.		electro deposition in acidic medium (pH = 2.5) under high over potential (<-2 V vs Ag/AgCl).	carried out under constant current (170 mA cm ⁻²) to maintain stable electrolys is condition s. The electrolyt e flow was controlle d by an eight channel peristalti c pump at a flow rate of 100 mL min ⁻¹ .	
1 3	Cu/SnO2 Core/Shell Structure	A thin layer of SnO ₂ , coated over Cu nanoparticles, with a Cu/SnO ₂ core/shell nanoparticle structure.	CO_2 saturated 0.5 M KHCO ₃ was used as the electrolyte. The p ^H of the electrolyte was not mentioned.	The onset potential of CO ₂ reduction to CO is at - 0.5 V, while the highest FE was achieved at a potential of 0.7 V vs RHE.	4.6 mA/cm 2	CO, H2 and formate.	FE for Co was recorded as 93%. When the SnO ₂ shell becomes thicker (1.8 nm), the core/shell NPs function as a SnO ₂ NP	The counter /refe rence electrod es were not mentio ned in the main text	core/shell Cu/SnO2 NPs	Monodisperse core/shell Cu/SnO ₂ NPs were synthesized via a seedmediated method via the decomposition of tin acetylacetonate (Sn(acac) ₂) in the presence of 7 nm Cu NPs at 250°C for 1 h. in this synthesis, the SnO ₂ shell thickness was	The reaction was performe d at ambient condition s of pressure and temperat ure.	[46]

P. I. Amosa et	al.278
----------------	--------

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
1 4	Copper Oxide catalyst	Electrodeposited cuprous oxide thin film	An aqueous 0.5M KHCO3 saturated with ultrapure CO2 was used as electrolyte. P ^H of 7.6	The reaction was conducted at potentials ranging from -1.0 to - 1.9 V (SCE).	Current density was not recorde d in the main text	CH ₃ OH, H ₂ , and trace amounts of CO.	catalyst and formate is the major product (85% FE at 0.9 V) 38% for CH ₃ OH	Ag/AgC l electrod e saturat ed with NaCl was selected as the referen ce electrod e along with a Pt wire as the counter electrod e.	Cuprous oxide thin Films, electrodeposi t ed on stainless steel substrates was used as the cathode	controlled by the amount of Sn(acac) ₂ added. Electrodes for CO2 reduction were fabricated via oxidization of Cu foils or thin film electrodeposition. Airoxidized electrodes were prepared by first cleaning the foil in 0.1 M HCl for 20 s followed by oxidation in an air furnace at 403 K for 17 h. Anodized electrodes were created by electrochemically oxidizing Cu foil in 0.5 M KHCO ₃ at a constant potential of 1.25 V (SCE) for 3 min. Cuprous oxide thin films were electrodeposited on stainless steel substrates at	CO ₂ reduction experime nts were performe d in a typical three electrode cell (30 mL volume). During the reaction, CO ₂ was bubbled into the electrolyt e for 30mins at 298K.	[47]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
15	CuO derived Copper catalysts	CuO-derived porous copper nanoribbon arrays	Co2 gas bubbled in aqueous 0.1M KHCO3 solution via gas dispenser was used as the electrolyte. P ^H was not mentioned.	The overpotent ia l recorded was –0.816 V vs. RHE	Current density was not recorde d in the main text	The products obtained are C ₂ H ₄ , C ₂ H ₆ and C ₂ H ₅ OH	The total FE for the C2 compounds is ~40%	A Pt foil and Ag/AgC l were used as the counter and ref- erence electrod e, respecti vely	CuO derived Copper	solution including 0.4 M CuSO4 and 3 M lactic acid at pH 9.0 with Cu foil as the anode. CuO-derived porous Cu NRAs electrode was prepared by the electrochemical reduction of CuO NRAs. NaOH, NaCl , Na2S208, and CuSO4 were dissolved into 100 mL deionized water. Cu foil with a geometric surface area of 4 cm ² was immersed in the as- prepared solution at 86°C for 8 min, during which Cu was oxidized to CuO. The foil was then taken out of the solution, rinsed with deionized water, and dried in air. A thin layer of Cu ₂ O was grown in a basic solution, which included NaOH, NaCl, and CuSO4, at temperature of 60°C for 10 s. The CuO NRA electrode was reduced under -0.18 V vs. RHE for 30 min to obtain Cu	The reaction was conducte d under ambient pressure and temperat ure. The potentios tatic electrolys is of CO2 was carried out in a conventio nal three- electrode cell by using a potentios tat	[48]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
1 6	Cu2O-derived copper nanoparticles	Cuprous oxide films with [100], [110] and [111] orientation and variable thickness	85 ml of 0.1 M KHCO ₃ was used as electrolyte at pH 6.8, as obtained after saturation with CO ₂ . CO ₂ was continuousl y purged at a rate of 20 ml min. ¹ for 30 minutes before each experiment, to attain saturation of the electrolyte. Then the flow rate was decreased to 5 ml min. ¹ .	The electroche mi cal reduction at a cathodic potential of 1.1 V vs RHE	0.8 mA cm- ² at pH 12 favours triangul ar pyrami d orientat ion in the (110) directio n where the (100) and (010) facets are expose d. Increasi ng the current density to 2 mA cm- ² at pH 12 favours the growth in (100)	CO, methane, ethylene ethane and ethylene	Not specified	Pt mesh was used as a counter electrod e and Ag/AgC l was used as referen ce electrod e.	Cu2O-derived copper nanoparticles	electrodes consisting of nanoporous ribbon array structure. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(II) lactate on commercially available copper plates from Cu2 ⁺ containing solutions prepared using 0.4 M CuSO ₄ and 3 or 4 M lactic acid at 60 or 70°C. The electrodeposition was conducted in a standard three- electrode cell where platinum mesh and Ag/AgCl in 3 M NaCl served as counter and reference electrodes, respectively.	Electroch emic al CO ₂ reduction was carried out in a glass cell using a three electrode assembly at room temperat ure and pressure.	[49]

P. I. Amosa et al. 280

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
1 7	(Cathode) Copper NPs and reduced graphene oxide nanocomposite catalyst	Unique nanocomposite consisting of Cu nanoparticles (NPs) and reduced graphene oxide (rGO) supported on a Cu substrate. The nanocomposite	The electrolyte used was CO2 saturated 0.1M NaHCO3	The overpotent ia l recorded was -0.4 V	directio ns with threefac ed pyrami ds, where the sides of the pyrami ds expose (111) facets.	CO, HCOOH and CH4.	76.6%	Ar- saturat ed 0.1 M NaHCO ₃ an d Arsatur ated 0.1 M Na2SO4 wherea	Nanocomposi te consisting of Cu nanoparticles (NPs) and reduced graphene oxide (rGO)	The Cu-rGO nanocomposite was formed directly on a Cu substrate using a facile electrochemical reduction method. A mixture of GO and Cu ₂ + precursors was cast on an etched Cu substrate; and the simultaneous formation of Cu-rGO nanocomposite was	The reaction was conducte d at three potentials (-0.4, -0.5, and -0.6 V) for six hours of electrolys is. A gas- tight	[50]
	catalyst (Cu-rGO)	nanocomposite was optimized in terms of the composition of Cu NPs and rGO as well as the overall amount.	solution whose pH was 6.65.	was –0.4 V (vs. RHE)	u	anu 0114.		s, the referen ce electrod e used was Ag/AgC l	supported on a Cu substrate was used as the cathode	nanocomposite was achieved via cyclic voltammetry (CV), which was carried out in 0.1 M Na2SO4 in the potential range from 0.62 to -0.58 V vs. RHE for five cycles. The composition and thickness of the	tight twocomp artment electroch emic al cell was used for the product formation and	

Ρ.	I.	Amosa	et a	1.282

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
								Dt		formed Cu-rGO nanocomposite were also optimized	analysis. A cationic exchange membran ewas utilized as a separator in the cell. Each compart ment contained 35.0 ml of the electrolyt e	
1 8	Nanoporous copper films catalysts	Nano Porous Copper Films by AdditiveControll ed Electrodepositio n. The morphologies of the Cu films are varied to exhibit wire, dot, or amorphous structures.	the electrolyte used was CO2 saturated KHCO3 aqueous solution. pH was not specified	The cathodic potentials recorded are -0.5 V vs. RHE for C ₂ H ₄ and 0.5 V vs. RHE for C ₂ H ₅ OH	Not s	C2H4, and C2H5OH	The FE recorded are 40% for C_2H_4 and 20% for C_2H_5OH	Pt mesh counter electrod e and an Ag/AgC l referen ce electrod e were used. The Ag/AgC l referen ce electrod e were	Nanoporous copper films catalysts	Nanoporous Cu film from plating baths containing 3,5- diamino-1,2,4- triazole (DAT) as an inhibitor was synthesized using electrodeposition method with high surface area and tunable morphology.	Cyclic voltamme try (CV), chronoa mpero metry (CA), and chronopo tenti ometry (CP) evaluatin g CO ₂ reduction performe d room temperat ure.	[51]

100

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
19	(Latnode) Cu ₂ O-Derived Copper Catalysts	Cu films of different thicknesses and morphologies	Aqueous 0.1 M KHCO ₃ was used as the electrolyte. pH of 6.8.	Electroche m istry and quantificati o n of the products was measured at the potential of -0.98V vs RHE	-31.2 mA cm ⁻² .	C2H4, ethanol and npropano l	FEs of 42.6% ($jC_2H_4 =$ -13.3 mA cm ⁻²), 11.8% ($jC_2H_5OH =$ -3.7 mA cm ⁻²), and 5.4% ($jC_3H=OH =$ -1.7 mA cm ⁻²), were recorded respectivel y.	calibrat ed before each experi ment with a normal hydrog en electrod e (NHE) in 1M HClO4. Ag/AgC l and Pt wire are used as the referen ce and counter electrod es respecti vely	Cu2ODerived Copper Catalysts	Cu2O films were grown hydrothermally onto mechanically polished Cu discs suspended on a custom-made Teflon holder in a Teflon-lined stainless steel autoclave at 145 °C for 90 min. A precursor solution consisting of 0.25 M of Cu(NO3)2·3H2O and 0–1.75 M NH3 dissolved in a solvent was used. The solvent consisted of a 23:13:2 volumetric ratio of atbanol	Electroch emic al measure ments were performe d using a Gamry 600 galvanost at/po tentiostat using a threeelect rode configura tion. The electrode s were housed in	[52]
										ultrapure water, formic and acid . The	a customm	

r. I. Amosu et ul. 204	Р.	mosa et a	1.284
------------------------	----	-----------	-------

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
	Plasma-	Cu nanocube	CO ₂ - saturated 0.1 M KHCO ₃	The applied potential	Nat		Maximum	Pt gauze and leakfree Ag/AgC l were	Activated	thickness of the films was expected to increase with the concentration of the NH ₃ . The as- prepared Cu20 films were then washed with copious amounts of water, dried overnight at 60 °C and prereduced to Cu0 in a separate 0.1 M KHCO ₃ electrolyte for 300 s, before being used as catalysts for CO ₂ reduction. We termed these as Cu ₂ O-derived Cu. Commercial Cu foils were first cleaned with acetone and ultra-pure water in an ultrasonic bath, and then electropolished in phosphoric acid at 3	ade, gastight, two compart ment Teflon cell. Electroch emic al measure ments were carried	
2 0	Activated Copper Nanocube Catalysts	catalysts with tunable Cu(100) facet	solution (pH 6.8) was used as the electrolyte in aqueous medium.	recorded was –1.0 V vs RHE for 1 h.	Not specifie d	C ₂ and C ₃	FE for C ₂ and C ₃ is ~73%	used as counter and referen ce electrod es respecti vely	Copper Nanocube Catalysts	V vs titanium foil for 5 min. Cu nanocubes were prepared by electrochemically anodizing the electropolished Cu foils in 0.1 M KCl with five triangular potential	out in a gastight H-cell separated by a Nafion 115 membran e.	[53]

285

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
								Α		scans ranging from 0.4 V to 2.0 V vs RHE at a rate of 500 mV s-1. During each cycle, the potential was held at the positive and negative limits for 10 and 5 seconds, respectively. The Cu nanocube samples were then rinsed with a large amount of ultra-pure water to remove the electrolyte. Plasma pre-treatments were then performed in a plasma etcher at a gas pressure of 400 mTorr of 02, H2 or Ar and power of 20 W for different periods of time.		
2 1	Oxide-derived Cu foam catalysts	Mesoporous Cu foams	CO2 saturated 0.5M NaHCO3 in aqueous medium. pH not mentioned	between - 0.4 to -1.0 vs RHE.	Highest at -1.0 V and are in the order of 57 mA/cm 2	H ₂ , CO, HCOO ⁻ , CH ₄ , C ₂ H ₄ and C ₂ H ₆	C2 efficiencies reaching FEC2 = 55%. The total FE of all the major products lies between 89% and 96%.	leakless Ag/AgC I _{3M} He Was used as treferen ce electrod e and a bright Pt-foil (15mm x 5mm) was	Cu foam catalysts.	Mesoporous Cu foam catalysts were electrodeposited on Cu blanket wafer coupons by a through mask plating process leaving a welldefined area covered with the Cu foam behind.	The electrolys is was carried out in a custom- built, air- tight glass cell (H-type).	[54]

P. I. Amosa et al. 286

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition S	Ref.
2 2	Hierarchical Cu pillar electrode catalyst	Highly perpendicular Cu pillar Structures	The electrolyte used was CO2bubbled 0.1 M KHCO3 aqueous solution (pH 6.66.7).	The electroche mi cal conversion of CO ₂ at various constant potentials (i.e. from -0.2 to -0.9 V vs. RHE). Recorded overpotent ia l formic acid was - 0.5 V (vs. RHE).	Not specifie d	formic acid, HCOOH.	The Cu-5 h electrode performed well with a 28 % FE to formic acid.	used as counter electrod e The standar d calomel electrod e (SCE) and Pt gauze were used as the referen ce and counter electrod esre spective ly.	Hierarchical Cu pillar structureswe r e used as the working electrode	Cu pillar electrodes (Cu2.5 h, Cu-5 h) was fabricated by using an electrodeposition method i.e. Highly perpendicular Cu nanopillar structure was prepared by cathodic electrodeposition on a Cu foil substrate	Electrolys es were performe d on a fuel- cell-like twocomp artment electroch emic al cell separated by a piece of selemion anion exchange membran e.	[55]
2 3	Nanostructure d Cu2ODerived Cu Catalyst /Palladium(II) Chloride	Cu2O nanoparticles deposited on polished Cu disc electrode. The surface of an electropolished Cu electrode was smooth and featureless	The electrolyte used was aqueous 0.1 M KHCO ₃ + 100mg PdCl ₂ . pH 6.8.	The conversion was performed at -1.0 V vs RHE	Not specifie d	C2 products i.e. C ₂ H ₄ , C ₂ H ₆ and ethanol.	FE of 3.4% was recorded for C_2H_4 , and FE of 30.1% for C_2H_6 .	The counter and referen ce electrod es were a Pt wire and a Ag/AgC l electrod e	The working electrode was Cu ₂ O nanoparticles deposited on polished Cu disc electrode	Cu ₂ O was electrochemically deposited onto a polished Cu electrode using a twoelectrode cell with a platinum counter electrode. Deposition was performed at 60 °C, with a fixed current of -0.7 mA for 1200 s.	The electroch emic al reduction of CO ₂ was performe d in a Gas tight Teflon electroch emic al cell.	[56]

2	28	7

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
								(Saturat ed KCl, Pine Researc h Instrum enta tion), respecti vely				
2 4	Surface Oxidized Copper Catalyst	Pure Cu metal sheet 4cm ³ , modified by surface oxidation.	The lectrolyte used was CO ₂ saturated 0.5 Mdm ⁻³ KCl.	The conversion was performed within the range of - 0.9 to -2 V vs Ag/AgCl	Not specifie d	Methane and ethane	Not specified	Ag/AgC l saturat ed KCl was used as referen ce electrod e and Pt foil as counter electrod e	The working electrode was Surface Oxidized Copper Electrodes	The metal electrodes used in the present study are pure Cu sheet of 4 cm2 where electrical connection is established through the same strip. The Cu strips were polished with fine emery paper and electrolytically treated in 1 mol dm- 3 phosphoric acid and sulphuric acid, cleaned with acetone to remove grease, washed subsequently with water and used as working electrode. The same Cu electrodes were modified by exposing them to high temperature oxygen mixed LPG	The electroch emic al measure ments were conducte d with an EC epsilon potentios tat. The experime nts were performe d in a laborator ymade H- cell	[57]

P. I. Amosa et al. 288

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
								Ag/AgC		gas at a flame temperature of 900 ^o C, referring as surface oxidized Cu electrode.		
25	Cu Nanoclusters	Cu nanoclusters on single crystal (1010) ZnO electrodes.	Electroche mical experiment s were carried out in aqueous 0.1 M KHCO ₃ electrolytes saturated with CO ₂	The reduction experiment s was conducted at -1.4 V versus Ag/AgCl	Not specifie d	H2, C2H5OH, C2H4, HCOO ⁻ , CO, CH3OH, and CH4.	$\begin{array}{c} H_2 \left(45.1\% \right), \\ C_2 H_5 OH \\ \left(10.2\% \right), \\ C_2 H_4 \\ \left(10.1\% \right), \\ HCOO^- \\ \left(7.7\% \right), CO \\ \left(5.4\% \right), \\ CH_3 OH \\ \left(2.8\% \right), CH_4 \\ \\ \left(1.8 \right). \end{array}$	l (saturat ed with NaCl) was used as referen ce electrod e and Pt. as counter electrod	The working electrode was single crystal cathode (With Cu nanoclusters)	Electrodes were fabricated by cleaning single crystal ZnO (1010) substrates, followed by vacuum deposition of Cu.	Electroch emic al experime nt was conducte d in a single compart ment PTFE cell	[58]
2 6	Tin Based Film on Copper Plate.	Sn/Cu electrode with the geometric surface area of 1cm ²	The electrolyte used was 40 mL of 0.1 mol L ⁻¹ KHCO ₃ aqueous solution, saturated with CO ₂ . pH not specified in the text	The electrolysis was carried out at a potential of -1.8 V vs. Ag/AgCl	5.08 mA cm ⁻² .	Formate	74.1% at −1.8 V.	Pt plate and an Ag/AgC l electrod e (sat. KCl) were used as counter and referen ce electrod es respecti vely	The working electrode was Sn based film on Cu electrode (i.e. prepared Sn/Cu electrode with the geometric surface area of 1 cm ² .	Sn based film with a thickness of 169 nm was electrodeposited on copper plate from a choline chloride/ethylene glycol based electrolyte containing SnCl ₂ . The electrochemical deposition was performed on the Cu substrate in nonaqueous solution containing 0.1 mol L^{-1} SnCl ₂ .	Electrolys is was carried out potentios tatica Ily using a LAND CT2001C cell performa ncetestin g instrume nt	[59]

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
27	Copper- Hydride Nanoclusters	Structurally precise ligand protected Cu- hydride nanoclusters, such as Cu ₃₂ H ₂₀ L ₁₂ (L is a dithiophosphate ligand). i.e. composite Cu ₃₂ /C/GDL electrode	The electrolytes used are 60 mL of 0.1 M KHCO3 and 0.4 M KCl solution saturated with CO ₂ . pH of 6.8	The onset potentials for the conversion of CO ₂ to HCCOH and CO are - 0.32 V and - 0.81 V vs. SHE, respectivel y. The over potential recorded are (0.3V, 0.4V) and (0.5V, 0.6V) for the production of HCOOH and H2 respectivel y.	Not specifie d	HCOOH, H2 and CO.	Cumulative FE for the 3 products is >90%. Cu32H20L 12 nanocluster predomina ntly produces HCOOH at low overpotenti als (89% at 0.3 V and 83% at 0.4 V). By contrast, the product selectivity dramaticall y changes when the overpotenti al is higher than 0.5 V where H2 is predomina ntly produced (85% at 0.5 V and 94% at 0.6 V).	Pt. plate (1.68 cm ²) and Ag/AgC l (3 M NaCl) are used as counter and referen ce electrod es respecti vely	The working electrode was a composite made from the Nanoclusters, carbon black and gas diffusion layer electrode	Synthesis method for the Nanoclusters was not specified in the main text. However, The composite working electrode was fabricated by spreading a catalyst ink, prepared by mixing 80 μ g of the Cu ₃₂ (H) ₂₀ {S ₂ P(O <i>i</i> Pr) ₂ } } ₁₂ cluster catalyst, 200 μ g of carbon black and 3.5 μ L of Nafion solution in 50 μ L of tetrahydrofuran, on a gas diffusion layer electrode (2 cm2).	Controlle d potential electrolys is (CPE) experime nts were Carried out for 90 min under vigorous stirring with a ZIVE MP1 potentios tat in an H-type cell. The working electrode and the counter electrode were separated by a protonex change membran e	[60]
2 8	AuCu Nanoparticles	Atomic Ordering Transformations of	The measureme nts was	0.43 mA/cm ²		CO	80%	Pt. wire was used as	The working electrode was	Au seed nanoparticles were	The reduction was	[61]

P. I. Amosa et al.290

S / N	Name of Catalyst/Chemi cal formula (Cathode)	Morphology	Electrolyte/ p ^H /ph ysical state of the electrolyte	Overpotent i al	Current density	Various Products obtained	Faradaic efficiency	Anode	Cathode	Synthesis method	Reaction condition s	Ref.
		AuCu Nanoparticles. E.g. <i>d</i> -AuCu and <i>o</i> AuCu NPs.	conducted at –0.77 V vs RHE	for <i>d</i> -AuCu NP to 1.39 mA/cm ² for <i>o</i> -AuCu NP				a counter electrod e and Ag/AgC l (3 M KCl) as a referen ce electrod e.	4 μg of each AuCu NP drop-casted onto a carbon paper electrode	fisrt synthesized. The as-synthesized Au NPs (0.25 mmol) were dispersed in 20 mL of hexane and used as seeds for AuCu NP synthesis. A typical synthesis procedure was carried out in a Schlenk line.	conducte d at standard electroch emic al condition s at 1atm CO_2 and room temperat ure.	

References

[1]. Dresselhaus M.S., Thomas I.L. *Nature*, 2001, **414**:332 [Crossref], [Google Scholar], [Publisher]

[2]. Chu S., Majumdar A. Nature, 2012,488:294 [Crossref], [Google Scholar],[Publisher]

[3]. Canadell J.G., Le Quéré C., Raupach M.R., Field C.B., Buitenhuis E.T., Ciais P., Conway T.J., Gillett N.P., Houghton R.A., Marland G. *Proc. Natl. Acad. Sci.*, 2007, **104**:18866 [Crossref], [Google Scholar], [Publisher]

[4]. Tans P., Keeling R. *URL Http//Www. Esrl. Noaa.* 14. *Gov/Gmd/Ccgg/Trends.* 2013 [Google Scholar], [Publisher]

[5]. Feldman D.R., Collins W.D., Gero P.J., Torn
M.S., Mlawer E.J., Shippert T.R. *Nature*, 2015,
519:339 [Crossref], [Google Scholar],
[Publisher]

[6]. Mann M.E. *Proc. Natl. Acad. Sci.*, pnas-0901303106, 2009 [Crossref], [Google Scholar], [Publisher]

[7]. Larcher D., Tarascon J.M. *Nat. Chem.*, 2015, 7:19 [Crossref], [Google Scholar], [Publisher]

[8]. Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D. *Int. J. Greenh. Gas Control*, 2008, **2**:9 [Crossref], [Google Scholar], [Publisher]

[9]. Olajire A.A. *Energy*, 2010, **35**:2610. [Crossref], [Google Scholar], [Publisher]

[10]. MacDowell N., Florin N., Buchard A., Hallett J., Galindo A., Jackson G., Adjiman C.S., Williams C.K., Shah N., Fennell P. *Energy Environ. Sci.*, 2010, **3**:1645 [Crossref], [Google Scholar], [Publisher]

[11]. Kondratenko E.V., Mul G., Baltrusaitis J., Larrazábal G.O., Pérez-Ramírez J. *Energy Environ. Sci.*, 2013, **6**:3112 [Crossref], [Google Scholar], [Publisher] [12]. Spinner N.S., Vega J.A., Mustain W.E. *Catal. Sci. Technol.*, 2012, 2:19 [Crossref], [Google Scholar], [Publisher]

[13]. Whipple D.T., Kenis P.J.A. *J. Phys. Chem. Lett.*, 2010, 1:3451 [Crossref], [Google Scholar], [Publisher]

[14]. Hori Y., *Electrochemical CO 2 reduction on metal electrodes;* Springer: New York, 2008; p 89 [Crossref], [Google Scholar], [Publisher]

[15]. Jitaru M., Lowy D.A., Toma M., Toma B.C.,Oniciu L. *J. Appl. Electrochem.*, 1997, **27**:875[Crossref], [Google Scholar], [Publisher]

[16]. Sanchez-Sanchez C.M., Montiel V., Tryk
D.A., Aldaz A., Fujishima A. *Pure Appl. Chem.*,
2001, **73**:1917 [Crossref], [Google Scholar],
[Publisher]

[17]. Chen C.S., Handoko A.D., Wan J.H., Ma L., Ren D., Yeo B.S. *Catal. Sci. Technol.*, 2015, **5**:161 [Crossref], [Google Scholar], [Publisher]

[18]. Zhu W., Michalsky R., Metin Ö., Lv H., Guo S., Wright C.J., Sun X., Peterson A.A., Sun S., *J. Am. Chem. Soc.*, 2013, **135**:16833 [Crossref], [Google Scholar], [Publisher]

[19]. Zhang S., Kang P., Ubnoske S., Brennaman M.K., Song N., House R.L., Glass J.T., Meyer T.J., *J. Am. Chem. Soc.*, 2014, **136**:7845 [Crossref], [Google Scholar], [Publisher]

[20]. Hoshi N., Kato M., Hori Y., *J. Electroanal. Chem.*, 1997, **440**:283 [Crossref], [Google Scholar], [Publisher]

[21]. Hori Y., Wakebe H., Tsukamoto T., Koga O., *Electrochim. Acta*, 1994, **39**:1833 [Crossref], [Google Scholar], [Publisher]

[22]. DiMeglio J.L., Rosenthal J., *J. Am. Chem. Soc.*, 2013, **135**:8798 [Crossref], [Google Scholar], [Publisher]

[23]. Ding C., Li A., Lu S.-M., Zhang H., Li C. *ACS Catal.*, 2016, **6**:6438 [Crossref], [Google Scholar], [Publisher]

[24]. Lee C.H., Kanan M.W. *ACS Catal.*, 2014, 5:465. [Crossref], [Google Scholar], [Publisher]

[25]. Won D.H., Shin H., Koh J., Chung J., Lee H.S., Kim H., Woo S.I. *Angew. Chemie Int. Ed.*,

2016, 55:9297 [Crossref], [Google Scholar],
[Publisher]
[26]. Varela A.S., Ranjbar Sahraie N., Steinberg
J., Ju W., Oh H., Strasser P. *Angew. Chemie Int. Ed.*, 2015, 54:10758 [Crossref], [Google
Scholar], [Publisher]

[27]. Liu Y., Chen S., Quan X., Yu H. *J. Am. Chem. Soc.*, 2015, **137**:11631 [Crossref], [Google Scholar], [Publisher]

[28]. Kuhl K.P., Cave E.R., Abram D.N., Jaramillo T.F. *Energy Environ. Sci.*, 2012, **5**:7050 [Crossref], [Google Scholar], [Publisher]

[29]. Lim R.J., Xie M., Sk M.A., Lee J.-M., FisherA., Wang X., Lim K.H. *Catal. Today*, 2014,**233**:169 [Crossref], [Google Scholar],[Publisher]

[30]. Schlögl R. Angew. Chemie Int. Ed., 2015,54:3465 [Crossref], [Google Scholar],[Publisher]

[31]. Qiao J., Liu Y., Hong F., Zhang J. *Chem. Soc. Rev.*, 2014, **43**:631 [Crossref], [Google Scholar], [Publisher]

[32]. Albo J., Alvarez-Guerra M., Castaño P., and Irabien A. *Green Chem.*, 2015, **17**:2304 [Crossref], [Google Scholar], [Publisher]

[33]. Vickers J.W., Alfonso D., Kauffman D.R. *Energy Technol.*, 2017, **5**:775 [Crossref], [Google Scholar], [Publisher]

[34]. Loiudice A., Lobaccaro P., Kamali E.A., Thao T., Huang B.H., Ager J.W., Buonsanti R., *Angew. Chemie Int. Ed.*, 2016, **55**:5789 [Crossref], [Google Scholar], [Publisher]

[35]. Song Y., Peng R., Hensley D.K., Bonnesen P. V, Liang L., Wu Z., Meyer H.M., Chi M., Ma C., Sumpter B.G., *ChemistrySelect*, 2016, **1**:6055 [Crossref], [Google Scholar], [Publisher]

[36]. Chang Z., Huo S., Zhang W., Fang J., Wang H. *J. Phys. Chem. C*, 2017, **121**:11368 [Crossref], [Google Scholar], [Publisher]

[37]. Ma S., Sadakiyo M., Heima M., Luo R., Haasch R.T., Gold J.I., Yamauchi M., Kenis P.J.A., *J. Am. Chem. Soc.*, 2016, **139**:47 [Crossref], [Google Scholar], [Publisher] [38]. Lum Y., Kwon Y., Lobaccaro P., Chen L., Clark E.L., Bell A.T., Ager J.W. *ACS Catal.*, 2015, **6**:202 [Crossref], [Google Scholar], [Publisher]

[39]. Hahn C., Hatsukade T., Kim Y.G., Vailionis A., Baricuatro J.H., Higgins D.C., Nitopi S.A., Soriaga M.P., Jaramillo T.F. *Proc. Natl. Acad. Sci.*, 2017, **114**:5918 [Crossref], [Google Scholar], [Publisher]

[40]. Zhang F.Y., Sheng T., Tian N., Liu L., Xiao C., Lu B.A., Xu B.B., Zhou Z.Y., Sun S.G. *Chem. Commun.*, 2017, **53**:8085 [Crossref], [Google Scholar], [Publisher]

[41]. Yang X., Fugate E.A., Mueanngern Y., Baker L.R. *ACS Catal.*, 2016, **7**:177 [<u>Crossref</u>], [Google Scholar], [Publisher]

[42]. Sen S., Liu D., Palmore G.T.R., *Acs Catal.*, 2014, 4:3091 .[Crossref], [Google Scholar], [Publisher]

[43]. Ren D., Ang B.S.H., Yeo B.S. Acs Catal.,2016, 6:8239 [Crossref], [Google Scholar],[Publisher]

[44]. Ren D., Deng Y., Handoko A.D., Chen C.S., Malkhandi S., Yeo B.S. *ACS Catal.*, 2015, **5**:2814 [Crossref], [Google Scholar], [Publisher]

[45]. Reller C., Krause R., Volkova E., Schmid B., Neubauer S., Rucki A., Schuster M., Schmid G. *Adv. Energy Mater.*, 2017, **7**:1602114 [Crossref], [Google Scholar], [Publisher]

[46]. Li Q., Fu J., Zhu W., Chen Z., Shen B., Wu L.
, Wang T., Lu G., Zhu J. *J. Am. Chem. Soc.*, 2017, **139**:4290 [Crossref], [Google Scholar],
[Publisher]

[47]. Le M., Ren M., Zhang Z., Sprunger P.T., Kurtz R.L., Flake J.C. *J. Electrochem. Soc.*, 2011, **158**:E45 [Crossref], [Google Scholar],
[Publisher]

[48]. Ke F.S., Liu X.C., Wu J., Sharma P.P., Zhou Z.Y., Qiao J., Zhou X.D. *Catal. Today*, 2017, 288:18 [Crossref], [Google Scholar], [Publisher]
[49]. R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, *Phys. Chem. Chem. Phys.*, 2014, 16:12194. [Crossref], [Google Scholar], [Publisher]

[50]. Hossain M.N., Wen J., Chen A., Sci. Rep., 2017, 7:3184 [Crossref], [Google Scholar], [Publisher] [51]. Hoang T.T.H., Ma S., Gold J.I., Kenis P.J.A., Gewirth A.A. ACS Catal., 2017, 7:3313 [Crossref], [Google Scholar], [Publisher] [52]. Handoko A.D., Ong C.W., Huang Y., Lee Z.G., Lin L., Panetti G.B., Yeo B.S. J. Phys. Chem. C, 2016, **120**:20058 [Crossref], [Google Scholar], [Publisher] [53]. Gao D., Zegkinoglou I., Divins N.J., Scholten F., Sinev I., Grosse P., Roldan Cuenya B. ACS Nano, 2017, 11:4825 [Crossref], [Google Scholar], [Publisher] [54]. Dutta A., Rahaman M., Luedi N.C., Mohos M., Broekmann P., ACS Catal., 2016, 6:3804 [Crossref], [Google Scholar], [Publisher] [55]. Chung J., Koh J., Kim E.H., Woo S.I., Phys.

Chem. Chem. Phys., 2016, **18**:6252 [Crossref], [Google Scholar], [Publisher]

[56]. Chen C.S., Wan J.H., Yeo B.S., J. Phys. Chem.C, 2015, **119**:26875 [Crossref], [Google Scholar], [Publisher]

[57]. Keerthiga G., Viswanathan B., Pulikottil C.A., Chetty R., *Bonfring Int. J. Ind. Eng. Manag. Sci.*, 2012, **2**:41

[58]. Andrews E., Ren M., Wang F., Zhang Z., Sprunger P., Kurtz R., Flake J., *J. Electrochem. Soc.*, 2013, **160**:H841 .[Google Scholar], [Publisher]

[59]. Lv W., Zhou J., Bei J., Zhang R., Kong F., and Wang W., *Int. J. Electrochem. Sci.*, 2016, 6183 [Crossref], [Google Scholar], [Publisher]

[60]. Tang Q., Lee Y., Li D.-Y., Choi W., Liu C.W.,
Lee D., Jiang D., J. Am. Chem. Soc., 2017,
139:9728 [Crossref], [Google Scholar],
[Publisher]

[61]. Kim D., Xie C., Becknell N., Yu Y., Karamad M., Chan K., Crumlin E.J., Nørskov J.K., Yang P. *J. Am. Chem. Soc.*, 2017, **139**:8329 [Crossref], [Google_Scholar], [Publisher]

How to cite this manuscript: Pigewh Isa Amos, Hitler Louis, Kayode Adesin Adegoke*, Ededet Akpan Eno, Akakuru Ozioma Udochukwu, Thomas Odey Magu. Understanding the mechanism of electrochemical reduction of CO₂ using Cu/Cu-based electrodes: A review. Journal of *Medicinal and Nanomaterials Chemistry*, 4(4) 2022, 252-293. DOI: 10.48309/JMNC.2022.4.2